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A B S T R A C T

We investigate the problem of automatically discovering the visual aspects of an object class. Existing meth-
ods discover aspects from still images under strong supervision, as they require time-consuming manual
annotation of the objects’ location (e.g. bounding boxes). Instead, we explore using video, which enables
automatic localisation by motion segmentation. We introduce a new video dataset containing over 10,000
frames annotated with aspect labels for two classes: cars and tigers. We evaluate several strategies for
aspect discovery using state-of-the-art descriptors (e.g. CNN), and assess the benefits of using automatic
video segmentation. For this, we introduce a new protocol to evaluate aspect discovery directly, in contrast
to the general trend of evaluating it indirectly (e.g. its impact on a recognition pipeline). Our results consis-
tently show that leveraging the nature of video to discover visual aspects yields significantly more accuracy.
Finally, we discuss two new applications to showcase the potential of aspect discovery: image retrieval of
aspects, and learning aspect transitions from video.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Traditionally, visual aspects have been defined as distinct view-
points of rigid 3-D objects [1,2,3,4]. However, viewpoint alone cannot
capture the appearance variations of complex, articulated objects in
natural images. For example, tigers seen from a similar viewpoint
can look very different due to articulated pose (e.g. a tiger lying and a
tiger standing, Fig. 1). We use a broader notion of aspect that consid-
ers four factors of variation: viewpoint, articulated pose, occlusions
and cropping by the image border. We explore the problem of auto-
matically discovering such aspects from natural images of an object
class. This task requires finding different object instances showing
the same aspect (e.g. tigers running to the right, face close-ups, Fig. 1).

While some recent methods discover aspects from still
images [5,6,7,8,9,10], they all require manual annotations of the
object’s location (e.g. bounding boxes). Location annotations allow
focussing on the appearance of the object rather than the back-
ground, but they are expensive and time-consuming to create. In this
paper instead we discover aspects from video, where we can seg-
ment the foreground objects from the background automatically, by
exploiting motion [11,12,13]. Hence, it is possible to discover aspects
under weak supervision, i.e. only one label per video shot is required.
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As an additional advantage, we can easily obtain video data for a
large number of classes from several sources (e.g. DVDs, YouTube).

We present an extensive exploration of weakly-supervised
aspect discovery in video, which we pose as an image clustering
problem (Section 5). We measure the quality of the discovered
aspects in terms of the compactness and diversity of the clustering
(Section 6.1). We experiment with several modern appearance
descriptors (SIFT [14], shape contexts [15], CNN features [16]), and
various levels of spatial support (e.g. whole image, foreground seg-
mentation). This enables to carefully evaluate the benefits of auto-
matically segmenting objects (Section 6).

Our exploration relies on a new protocol for evaluating aspect dis-
covery directly. In contrast, previous works evaluate aspect discovery
indirectly, typically by measuring its impact on object detection per-
formance [5,6,7,8]. For this, we collected a large dataset sourced from
videos of two different classes, car and tiger (for a total of 2664 video
shots, Section 4). The choice of the car and tiger classes allows us to
explore two very different scenarios. Cars are rigid objects, and the
major factors of aspect variations are different viewpoint, occlusions
and croppings. Tigers display a broader range of different poses due
to their complex articulation (Fig. 1). As an additional difference, cars
exhibit higher intra-class variability in color and shape than tigers
(e.g. different makes).

We annotated a few frames per shot with ground-truth aspect
labels using an efficient labelling scheme (totalling over 10,000
frames, Section 3). This scheme captures the four factors of aspect
variation by labelling simple, discrete properties of the object’s
physical parts. For example, we can distinguish between the top two
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Fig. 1. Aspects discovered by our method (one per row). Despite showing tigers from the same viewpoint, the top two aspects look very different due to articulated pose and
cropping. Our notion of aspect considers all these factors (Section 3).

aspects in Fig. 1 by considering that the hind legs are not visible in
the second. We plan to release this dataset and the aspect labels.

Our experimental exploration demonstrates the great potential of
using video for weakly supervised discovery (Section 6). In particu-
lar, the accuracy of the discovered aspects improves significantly if
we use motion segmentation to get an estimate of the object loca-
tion. After evaluating aspect discovery directly, we also show that
it is useful for other applications. First, we use the aspects discov-
ered by our system to enable a new kind of image retrieval based on
aspects (Section 7.1). Second, we exploit the temporal nature of video
to learn models of aspect transitions (e.g. from lying to standing,
Section 7.2).

The rest of the paper is organized as follows. We start by dis-
cussing the two main components of our evaluation protocol: the
labelling scheme (Section 3) and the dataset (Section 4). We then
present several strategies for aspect discovery (from both videos and
still images, Section 5) and present the results of our extensive explo-
ration (Section 6). We conclude by introducing two applications that
benefit from aspect discovery (Section 7).

2. Related work

2.1. Early work on aspects

Early work considered simple objects for which all possible
aspects could be exhaustively enumerated [1,2,3]. More recently, Cyr
and Kimia [4] tried to learn a manageable collection of representa-
tive views of an object instance. All these methods are limited to
synthetic views of a single object instance.

2.2. Aspect discovery

Several methods [5,6,7,8,9,10,17,18,19] discover aspects
implicitly, in order to train specialised classifiers for each of them

(components of a mixture model). Some of these works [5,6,7,8] clus-
ter HOG descriptors extracted from bounding boxes in the training
images (manually annotated). Others [9,10] use exemplar SVMs [20]
as a similarity measure between bounding boxes to drive the cluster-
ing. A few methods require additional time-consuming annotations,
such as the location of object parts [17] or keypoints [18,19]. None
of the methods above is weakly supervised. Moreover, while aspect
discovery is a crucial intermediate step in their pipeline, it is evalu-
ated only indirectly by measuring the performance improvement of
the overall system.

2.3. Aspects in multi-view models

The works above use the discovered components in isolation.
In contrast, other methods take the relationships between different
aspects into account to build multi-view models [21,22,23,24,25].
They either require expensive bounding-box and viewpoint anno-
tations for each training image [21,22,23] or very detailed 3-D CAD
models [24,25]. Only the work of [26] uses video for this task. Their
method is trained on a single short cellphone video per class, taken
by walking around the object. While this procedure captures view-
points well, it might fail to record other factors of variation, such
as articulated pose. Moreover, it is not easily applicable for cer-
tain classes, such as wild animals. In practice, [26] only considers
common rigid objects i.e. cars, motorbikes, wheelchairs, etc.

2.4. Modelling pose variations with parts

In the context of object detection and segmentation, some
works [18,27,28] model variations in pose and articulation using
poselets, i.e. parts that are tightly clustered in both appearance and
configuration space (e.g. crossed hands, frontal face). This is some-
what related to our definition of aspects in terms of part properties
(Section 3). However, learning poselets requires manual annotation
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Fig. 2. Part visibility labels. (Top) We annotate 13 physical parts of cars with visibility tags (Section 3). (Bottom) We annotate 9 physical body parts of tigers with visibility tags.
Note that our annotation is weak, we do not mark the parts with bounding boxes.

of keypoints [18,27] and 3-D joint configurations [18], so they are not
suitable for weakly supervised aspect discovery.

3. Aspect labels

Our labels accurately capture the four factors of aspect varia-
tion (viewpoint, articulated pose, occlusions, cropping), by consider-
ing simple properties of the object’s physical parts (e.g. head, legs,
Figs. 2 and 3). We uniquely identify the viewpoint, occlusions and
cropping by considering which parts of the objects are visible in
the image (e.g. when a tiger is seen from the back, the face is not

visible, Fig. 2). We capture pose variations using additional con-
figuration labels for the articulated parts (e.g. standing, lying for
legs).

This scheme provides a compact yet fine-grained description of
the object’s aspect. As an additional advantage, it is easy to annotate
accurately and unambiguously. Moreover, it naturally allows us to
define a distance between aspects, which we will use for evaluation.
Note, that we use these aspects labels only to evaluate the quality of
the aspect clusters discovered by our method (Section 6.1) by evalu-
ating the label similarity between frames in a cluster. During aspect
discovery, we do not try to estimate the labels themselves (e.g. we do
not try to localise object parts).

Fig. 3. Part configuration labels (for tigers only). (Top) We annotate 6 different face orientations (Section 3). (Bottom) We annotate 4 different leg configurations.
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3.1. Part visibility labels

For cars we use 13 parts: windscreen, wheels, lights, frontal doors
and roof (Fig. 2 top). For tigers we use 9: face, sternum, left and right
shoulders, left and right thighs, front and hind legs, and buttocks
(Fig. 2 bottom). We annotate a part as visible if more than 50% of the
area of that part is visible.

3.2. Part configuration labels

For tigers, we choose the orientation of the face from six possi-
ble orientations (when visible, Fig. 3 top). This allows to distinguish
across different face close-ups, which are very frequent in animal
videos. We also choose the leg configuration from: lying, standing,
walking and running (Fig. 3). This property is indicative of both pose
and appearance (due to motion blur). It is significantly easier and
less time-consuming for humans to annotate than, say, specifying the
angles of the joints of the leg.

3.3. Distance between aspects

We now define a distance to measure the similarity between two
aspects. For instance, walking to the right should be closer to run-
ning to the right than a face close-up. Standing facing right should be
closer to laying facing right than to laying facing towards the cam-
era. Our distance captures such transitions in aspect space smoothly
by using the part labels. We argue that this is much more expres-
sive than considering aspects as mutually exclusive categories, which
would require complex hand-defined rules to determine the distance
between every pair of aspect categories. Instead, our distance mea-
sures similarity by simply considering how many parts are common
between the two aspects.

Let Ai and Aj be two aspects. We define:

D
(
Ai, Aj

)
= 1 −

∑
p

dp
(
Ai, Aj

) ∣∣V (Ai) ∪ V
(
Aj

)∣∣ (1)

where dp is the distance with respect to part p, and V(A) the set
of visible parts in A; dp(Ai, Aj) = 1 if p is visible in both aspects,
0 otherwise. For face and legs, dp further depends smoothly on the
difference in orientation/action (Fig. 4).

4. Dataset

We assembled a dataset containing several hundreds video shots
for two different classes (car and tiger). We annotated frames in each
shot with the aspect labels (Section 3), which allows direct evalua-
tion of aspect discovery (Section 5). Finally, we exploit the nature of

video to provide automatic object localisation for each frame using
foreground segmentation through motion.

We collected the shots from 188 car ads (~1–2 min each) and 14
nature documentaries about tigers (~40 min), amounting to roughly
14 h of video. We automatically partitioned these raw videos into
shorter shots [29], and kept only those showing at least one instance
of the class. This produced 806 shots for the car and 1880 for the tiger
class, typically 1–100 sin length.

We annotated aspect labels as follows. First, we randomly chose
five frames per shot, and annotated each of them with the number
of objects shown. We then gave aspect labels only to frames show-
ing exactly one object (to avoid ambiguities). This produces a total of
6610 frames with aspect label for tigers, and 3485 for cars.

Last, we used [12] to automatically segment the foreground in
each shot. For the frames with aspect labels we also marked whether
the segmentation is accurate. The segmentations and the aspect
labels will be available on our website.

4.1. Statistics

For the aspect labels, we observed 643 unique combinations for
the tigers, and 293 for cars. Some are more frequent, for example
there are 221 frontal face close-ups.

In order to measure the accuracy of the segmentation algorithm,
we have manually annotated one frame for each shot with a bound-
ing box on the object. We measure accuracy using the CorLoc per-
formance measure of [30], i.e. the percentage of bounding boxes
which are correctly localised up to the PASCAL VOC [31] criterion
(intersection-over-union ≥0.5). For the purposes of this evaluation,
we automatically fit a bounding box around the largest connected
component of the segmentation output. The segmentation algorithm
achieves get 55% CorLoc, which is in line with the results reported
in [12] on another dataset (YouTube-Objects [30]).

5. Automatic aspect discovery from video

We treat aspect discovery as a frame clustering problem. We
explore two families of descriptors: bag-of-visual-words (BoVW,
Section 5.1) and Convolutional Neural Networks (CNN, Section 5.2).
We consider various spatial support over which to compute descrip-
tors, including the whole frame or the foreground segmentation
produced automatically by [12].

5.1. Bag-of-Visual-Words descriptors

The Bag-of-Visual-Words (BoVW) approach models an image as
an orderless collection of visual words (i.e. quantized local features).

Fig. 4. (a) Distance matrix for the “face” part (dp , Section 3). The entries show the distance between the different face orientations, denoted by the arrows (Fig. 3 top). N/V denotes
that the part is not visible. (b) Distance matrix for the “legs” part (dp , Section 3). The entries show the distance between the different leg configurations (Fig. 3 bottom).
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Fig. 5. Spatial binning for BoVW descriptors. (Top) A rectangular grid fit over the segmentation [12]. Even small segmentation errors (right) lead to a very different configuration
of the spatial bins. (Bottom) A log-polar grid placed on the centre of mass of the segmentation. Both the centre of mass and the radius of the log-polar grid are robust to small
segmentation errors (Section 5.1).

The BoVW descriptor is a histogram recording the frequencies of the
visual words over a spatial support of interest (e.g. an entire image
or an image region). While this disregards information about the
spatial layout of the image, adding geometric information using spa-
tial binnings (Fig. 5) can help image classification [32] and object
detection [33] performance.

We consider various combinations of visual words (SIFT [14]
and shape-contexts [34]), spatial supports (e.g. foreground segmen-
tation [12]), and spatial binnings (e.g. spatial pyramids [32]). Each
combination produces a different BoVW descriptor.

5.1.1. Visual words
First, we consider dense SIFT [14] computed on 4 × 4 pixel

patches at every pixel. Second, we use [34] to extract shape-context
features from the contour of the segmentation. We convert these fea-
tures into visual words using a vocabulary of 1000 visual words for
SIFT and 100 for shape-contexts.

5.1.2. Spatial support
We consider three types of spatial supports to determine the

extent to which each feature contributes to the BoVW: whole frames,
segmentation [12], and motion saliency [12]. We use a general, uni-
form treatment for all supports, by assigning a weight wi ∈ [0, 1] to
each pixel i in the frame. The feature at i contributes by wi to the
BoVW.

For whole frames, we give equal weight to all pixels (i.e. wi =
1∀i). For the segmentation we set wi = 1 if i is part of the foreground,

otherwise wi = 0. Motion saliency uses motion to compute the prob-
ability pi that pixel i is part of foreground (we simply set wi = pi).
This can be seen as a soft version of the segmentation. Typically, it
produces a roughly correct localisation even when the segmentation
is very inaccurate (Fig. 6).

Since shape-contexts are defined on object contours, we only use
them with the segmentation (we try all supports for SIFT). Last, note
how segmentation and motion saliency enable to measure appear-
ance purely on the object, excluding the background. They are made
possible by exploiting the temporal nature of video.

5.1.3. Spatial binning
The basic idea of spatial binning is to partition the spatial support

into a fixed set of spatial bins, and compute a separate histogram for
each. Here, we consider two different variants.

First, we use 3-level spatial pyramids over a rectangular grid [32].
Second, we propose a log-polar radial binning inspired by [34]. The
log-polar bins are placed on the centre of mass of a given spatial sup-
port (Fig. 5). We use 8 angular bins and 6 radial bins. To achieve scale
invariance, the step of the radial bins is proportional to the scale of
the spatial support, i.e. the average distance between each pixel i
and the centre of mass weighted by wi. This scheme is more robust
to small errors in the segmentations than a rectangular grid (Fig. 5).
Last, we consider orderless BoVWs (‘no binning’) as a baseline.

Fig. 6. Spatial support. Motion saliency (right) estimates the probability of being part of the foreground at each pixel (Section 5.1). It often provides a good rough localisation even
when the segmentation fails (left), where pixels are instead hard assigned to foreground/background.
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Fig. 7. Comparison of different spatial binnings for bags-of-visual-words descriptors (Section 6.2). The first and second rows correspond to tigers and cars, respectively.

5.2. CNN descriptors

CNN descriptors achieve state-of-the-art performance on vari-
ous tasks (e.g. classification [35], detection [36]). Like BoVWs, CNN
descriptors can be computed on different spatial supports. Note that
the concept of binning does not apply here.

5.2.1. Spatial support
First, we extract 4096-dimensional CNN descriptors from the

whole frame using CAFFE [16] (we use the AlexNet network archi-
tecture [35]). This CNN model was trained for whole image clas-
sification on Imagenet [37]. Second, we extract 4096-dimensional
CNN descriptors from the bounding box of the segmentation. Here,
we use a model fine-tuned for object localisation on class-agnostic
object proposals [36]. We found this to be more suitable for the
segmentation support. We do not consider motion saliency, since
incorporating individual pixel weights into the CNN framework is
not straightforward.

5.3. Clustering

We cluster frame descriptors using k-medoids, which is suitable
for any distance function. We compute distances between BoVW
descriptors using histogram intersection. For CNN descriptors we

use Euclidean distance. For efficiency, we precompute the distance
matrix between all frames before clustering. We cluster 1000 times
and keep the clustering with the lowest energy to reduce the effects
of random initialisation.

6. Evaluation of aspect discovery

6.1. Protocol

For evaluation, we use two different criteria: clustering energy
and diversity. The combination of these two carefully designed mea-
sures provides a complete picture of the quality of the clustering.

6.1.1. Clustering energy
This measures the compactness of the clusters, i.e. it penalises

assigning dissimilar aspects to the same cluster. Let Ak be the medoid
of cluster k, i.e. the aspect in k minimising the sum of distances to all
other aspects in k. We define the energy as: 1

N

∑
k

∑
j∈k

D
(
Ak, Aj

)
, where N

is the total number of points being clustered. This is a generalisation
of the standard purity evaluation measure [38] for a continuous label
space, i.e. using a smooth D penalises putting items with different
labels in the same cluster proportionally to their distance.

Fig. 8. Comparison of different spatial supports (Section 6.2). All SIFT plots (a, c) use log-polar binning. The first and second rowscorrespond to tigers and cars, respectively.
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Fig. 9. When using segmentation as spatial support, CNN is better or comparable to the other descriptors (a). If we evaluate only on frames where the segmentation is accurate
(b, Section 4), the gap between SIFT and CNN is significantly reduced, especially on tigers (Section 6).

6.1.2. Clustering diversity
In the video domain, energy can be trivially minimised by cluster-

ing together all frames in a shot, which on average contains only 1–2
aspects of the same object instance. Instead, applications using these
aspect clusters need to see different object instances of the same
aspect (e.g. learning a multi-view class model, or retrieving different
instances of a query aspect, Section 7.1).

Hence, we also measure the diversity of a cluster, i.e. the aver-
age number of different shots per cluster: 1

K

∑
k

|Sk|, where K is the

number of clusters and Sk is the set of shots present in cluster k.
Diversity rewards clustering together occurrences of the same aspect
from different shots (hence different object instances).

6.2. Results

We present here an extensive exploration of the various descrip-
tors for aspect discovery (Section 5) on our dataset (Section 4). We

evaluate each descriptor separately by computing clustering energy
and diversity. Since the true number of aspect clusters is not known
a priori we experiment with different numbers of clusters: 50, 100,
200, 400, 600 and 800. Last, we explore learning a better distance for
clustering by combining them.

6.2.1. Spatial binning
We first evaluate spatial binnings for SIFT on the whole frame

(Fig. 7a). Interestingly, both rectangular grid and log-polar radial
are comparable to no binning, which is in contrast to the findings
of [32] for image classification. This happens because most bins end
up covering the background regardless of the choice of spatial bin-
ning, when applied to whole frames. On motion saliency (Fig. 7b),
log-polar radial and rectangular grid perform similarly, both being
slightly better than no binning. On segmentation, log-polar performs
significantly better than rectangular grid for both SIFT (Fig. 7c) and
shape contexts (Fig. 7d). No binning performs better than rectangu-
lar grids, showing that naive rectangular grids are not robust to small

Fig. 10. Example aspect clusters discovered for the tiger class. Each row corresponds to a different cluster. Here, we used CNN on segmentation as descriptors (Section 5.2).
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errors in the automatic segmentations (Fig. 5). In all the following
experiments we use log-polar binning, as it always performs equally
or better than the alternatives.

6.2.2. Spatial support
Here we evaluate the different spatial supports. For the SIFT

descriptors (Fig. 8a), both segmentation and motion saliency outper-
form whole frame, with segmentation offering the best performance.
This is because it allows to focussing on the appearance of the fore-
ground object. Instead, whole frame is confused by the background,
which has little correlation with the object’s aspect. When clustering
only the frames with accurate segmentation (Section 4), the seg-
mentation spatial support outperforms the others by an even larger
margin (Fig. 8c).

Experiments on CNNs reveal the same trend, i.e. segmentation
outperforms the whole frame (Fig. 8b), and the gap between them
increases when using only accurate segmentations (Fig. 8d).

These experiments demonstrate that video offers an advantage
over still images as it enables automatic object localisation. Using
segmentation improves on the other supports even if it is accu-
rate only half of the time (Section 4). When we focus on frames
with accurate segmentations only, the gap increases substantially.
This indicates that further advances in video segmentation can lead
to even better aspect discovery. Figs. 10 and 11 show some aspect
clusters found using CNN on segmentation.

6.2.3. Descriptors
Here we compare the different descriptors (SIFT BoVW, shape-

contexts BoVW, CNN, Fig. 9). For each, we use the best combination
of spatial support/binning based on the experiments above.

Shape-contexts is generally inferior to the others, especially on
tigers (Fig. 9b), possibly because the automatic segmentations often
miss the fine details of the contours (e.g. paws, tail).

Fig. 12. Distance learning. We learn a distance function that combines all the indi-
vidual descriptors tested for clustering (Section 6), using two alternative regression
methods: linear (pink) and regression forest (cyan). Both outperform CNN on segmen-
tation (red), which is the descriptor that individually performs best (Section 6).

CNN outperforms SIFT BoVW significantly on tigers, while they
are comparable on cars. When clustering only frames with accu-
rate segmentations, SIFT performs better than CNNs on cars, and is
comparable on tigers. This goes against the general trend of CNN
outperforming SIFT for various computer vision tasks [35,36,39,40].
This might be because CNN do not take full advantage of the detailed
pixel-wise support that the segmentation provides, as they are
extracted from its bounding box. Unfortunately, extracting CNNs
from a pixel-wise support is still an open problem. Given the ongo-
ing advancements in automatic video segmentation [11,12,13], this
is a promising area to explore.

6.2.4. Distance learning
Here, we explore combining all the descriptors mentioned above

in order to improve the clustering. Intuitively, we want to drive the
clustering with a distance that is as close as possible to the true dis-
tance between aspects (1). We pose this as a regression problem: we

Fig. 11. Example aspect clusters discovered for the car class. Each row corresponds to a different cluster. Here, we used CNN on segmentation as descriptors (Section 5.2).
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use the distances computed with respect to individual descriptors as
predictors, and the distance (1) between ground-truth aspect labels
as target.

We begin by splitting the dataset into two halves. We first train
a regressor to predict the distance between ground-truth labels (1)
from the distances of the individual descriptors in one half. Then we

Fig. 13. Our aspect retrieval system (Section 7.1) supports searching a database D of unlabelled images using an aspect semantic label as query (e.g.“Right side” or “Face close-up”).
Here, we show a subset of D (a), and some examples of the images retrieved by our system (b–d). We illustrate the 7 highest scoring images for: face close-up (b), front size (c)
and right side (d). Each panel (b–d) shows the output of the retrieval system for three different strategies for aspect discovery: using ground-truth aspects, CNN on segmentation,
and CNN on whole frame.
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use this regressor to predict distances between frames in the other
half, and use them for clustering.

We experiment with two alternative regression models, linear
regression [41] and regression forests [42]. For the regression forest
we used 250 trees with a depth of 100. Both regressors bring a
moderate improvement to using individual descriptors (Fig. 12).
While regression forests provide a better approximation of the
ground-truth distance, both methods perform equally well for
clustering. Note, however, that this experiment requires aspect
labels for the training subset, whereas all the experiments before are
unsupervised.

6.2.5. Summary of results
The log-polar binning scheme performs best under all circum-

stances. Segmentation is the best performing spatial support, and in
general CNN performs better than SIFT. However, when we focus on
videos with accurate segmentation only, the gap between CNN and
SIFT disappears. We posit that this happens because CNNs operate
on bounding boxes and cannot fully exploit the pixel-level support
provided by the segmentation. Experimenting with accurate seg-
mentation only also indicates that advances in video segmentation
will lead to better aspect discovery.

7. Applications

We now introduce two possible applications of our aspect
discovery system. We discuss an image retrieval system for
aspects (Section 7.1), and how to learn transitions in aspect space
(Section 7.2).

7.1. Aspect image retrieval

We now discuss an image retrieval application that exploits the
aspect clusters discovered by our method. Specifically, we build an
“aspect retrieval”system, where a user enters a textual query speci-
fying an aspect with a natural semantic label (e.g. frontal tiger, face
close-up), and the system automatically retrieves suitable images
(Fig. 13b–d) from a large unlabelled database D (Fig. 13a).

To achieve this, the retrieval system needs to learn about the
appearance of each semantic label. The traditional way to do it would
require labelling a large number of training images per label. Instead,
we use as training data a set V of videos of the class with no seman-
tic labels. First, we let our system discover clusters of aspects in V .
The annotator then assigns one semantic label to each cluster, which
significantly reduces the annotation effort (33× in the experiments
below).

7.1.1. Protocol
For this experiment, we define five semantic aspect labels: face

close-up, left side, right side, front side and back side. For training, we
use the 6610 frames of the tiger class (Section 4) as V . Instead of man-
ually labelling each individual frame, we cluster them automatically
(Section 5.3) using CNN on segmentation as descriptor (Section 5.2).
We set the number of clusters to 200. We then label each cluster
with the most frequent semantic label in it, choosing from the five
options above (the label gets assigned to each image in the cluster).
This effectively reduces the number of items to manually annotate
from 6610 to 200, reducing the human effort by a factor 33.

For testing, we use a database D consisting of 200 images of
tigers sourced from ImageNet [37] (Fig. 13a). Given a query seman-
tic label, we score each image I ∈ D as follows. We find its k nearest
neighbours in V according to the distance with respect to the CNN

Fig. 14. Results on image retrieval (Section 7.1). The horizontal axis indicates the size
of the retrieval set returned to the user. The vertical axis is precision. The curves differ
only in the distance used for finding aspect clusters in the video database.

descriptor. We set the score of I to the number of neighbours with
the same semantic label as the query. Finally, we rank the images in
D according to their score and return them to the user.

To evaluate the system, we manually annotate ground-truth
semantic labels on D, and compute the average precision of the five
possible queries (Fig. 14). As baseline, we compare against a system
equivalent to the one described above, except that we replace the
spatial support used for finding the aspect clusters: CNN on whole
frames, rather than on segmentation (Section 5.2). We also com-
pare to an upper bound where we find the aspect clusters using
the distance (1) between our ground-truth aspect label annotations
(Section 3).

7.1.2. Results
CNN on segmentation (Fig. 14, red curve) clearly outperforms

CNN on whole frames (blue curve). The only thing changing between
the two curves is the method used for aspect discovery: exploiting
video to get a segmentation leads to better aspect discovery, which
in turn leads to better image retrieval performance. As expected,
discovering aspects using the ground-truth annotations provides an
upper bound for these automatic methods, showing that further
improvements in aspect discovery would be beneficial to tasks like
image retrieval (pink curve).

Fig. 13 shows a few qualitative examples. Consider the query
“Right side”(d): when we use ground-truth labels and CNN on seg-
mentation for clustering, five of the seven highest scoring images
match the query, i.e the tiger in the retrieved images is actually facing
right. This degrades to two when we use CNN on whole frame, show-
ing that in general the aspect discovery system benefits from using
the segmentation in this case. Instead, the performance of segmen-
tation and whole frame are very similar on face close-up; in this case
the tiger occupies most of the image, which allows CNN on whole
frame to match the performance of CNN on segmentation.

7.2. Modelling aspect transitions

Another advantage of video over still images is that it allows rea-
soning about transitions across aspects, for example from frontal
head to head facing right, or from lying to standing (Fig. 15). This
can be useful in a variety of tasks, such as tracking object instances
in new video, aspect-based video retrieval, or as a starting point for
learning grammars of aspects.

We consider here learning a probabilistic model of aspect tran-
sitions from the ground-truth aspect labels in our video dataset
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Fig. 15. Aspect transitions. We learn transitions between aspects from the labels in our dataset, and use them to generate interesting random walks in aspect space (Section 7.2).
Top row: Tiger turning its head. Middle row: Tiger entering the frame and leaving. Last row: Tiger lying down, standing up and walking into tall grass.

(Section 3). Let A be the set of all unique aspects in the dataset (for
a total of 643, Section 4). We construct a transition matrix T where
each entry

T(K, L) =
(

1 − 1
1 + Nk

)
• P(K, L) +

1
1 + Nk

P(K, L) , (2)

is the probability of transitioning from aspect K to L. It is computed
as the weighted sum of a transition probability P we learn from the
ground-truth labels, and a smoothness prior P (Nk is the number of
occurrences of aspect K in the dataset).

We compute P(K, L) from the ground-truth aspect labels as fol-
lows. Let

(
fi, fj

)s
KL be any two frames in a shot s such that fi contains

an instance of aspect K and fj an instance of aspect L. Each such pair
contributes to P(K, L) by w(i, j) = e(1−|j−i|), i.e the probability of tran-
sitioning from K to L is greater if fi and fj are close in time. This gives

P(K, L) =

∑
s

∑
(fi ,fj)

s
KL

w(i, j)

Z
, (3)

where Z =
∑

A∈A
P(K, A) is the normalisation constant.

To model the transitions between rare aspects more effectively,
we include a smoothness prior P

P(K, L) =
1 − D(K, L)∑

A∈A
1 − D(K, A)

, (4)

where D is the distance (1) between aspects, which is smooth by
construction (Section 3).

We demonstrate the expressiveness of the learnt transitions
qualitatively, by using T to produce random walks in aspect space
(Fig. 15). We choose the starting aspect A0 by uniformly sampling
from A. At every step t we sample the next aspect At+1 from the tran-
sition probability T(At+1, At). To visualize the random walk, for each
At = K we choose one instance of aspect K from those available in
the dataset. This approach discovers several interesting aspect tran-
sitions, such as standing up (Fig. 15, third row): note how the four
tigers illustrating this transition all come from different shots.

8. Conclusions

In this paper, we conducted an extensive exploration of weakly-
supervised aspect discovery from video. Our exploration was eval-
uated on a novel, direct protocol. We experimented with several
modern appearance descriptors (SIFT, shape contexts, CNN features),
and various levels of spatial support (e.g. whole image, segmenta-
tion). We demonstrated that exploiting the nature of video through
the use of automatic foreground segmentation leads to consistently
better aspect discovery in all cases. Finally, we showed that aspect
discovery can enable new applications, such as semantic-aspect
image retrieval, and modelling transitions between aspects.

References

[1] J.J. Koenderink, A.J. van Doorn, The internal representation of solid shape with
respect to vision, Biol. Cybern. (1979).

[2] W.H. Plantinga, C.R. Dyer, An algorithm for constructing the aspect graph, FOCS,
1986.

[3] K. Bowyer, J. Stewman, L. Stark, D. Eggert, ERRORS-2: a 3D object recognition
system using aspect graphs, Proc. ICPR, 1988.

[4] C.M. Cyr, B.B. Kimia, 3D object recognition using shape similiarity-based aspect
graph, ICCV, 2001.

[5] P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object detection with
discriminatively trained part based models, IEEE Trans. PAMI 32 (9).

[6] C. Gu, X. Ren, Discriminative mixture-of-templates for viewpoint classification,
ECCV, 2010.

[7] S. Divvala, A. Efros, M. Hebert, How important are ‘Deformable Parts’ in the
deformable parts model?, ECCV, 2012.

[8] B. Drayer, T. Brox, Training deformable object models for human detection
based on alignment and clustering, ECCV, 2014.

[9] J. Dong, W. Xia, Q. Chen, J. Feng, Z. Huang, S. Yan, Subcategory-aware object
classification, CVPR, 2013.

[10] O. Aghazadeh, H. Azizpour, J. Sullivan, S. Carlsson, Mixture component identifi-
cation and learning for visual recognition, ECCV, 2012.

[11] Y.J. Lee, J. Kim, K. Grauman, Key-segments for video object segmentation, ICCV,
2011.

[12] A. Papazoglou, V. Ferrari, Fast object segmentation in unconstrained video,
ICCV, 2013.

[13] A. Faktor, M. Irani, Video object segmentation by non-local consensus voting,
BMVC, 2014.

[14] D. Lowe, Local feature view clustering for 3D object recognition, CVPR, Springer
2001, pp. 682–688.

[15] S. Belongie, J. Malik, Shape matching and object recognition using shape
contexts, IEEE Trans. PAMI 24 (24).

[16] Y. Jia, Caffe: An Open Source Convolutional Architecture for Fast Feature
Embedding, 2013, http://caffe.berkeleyvision.org/.

[17] H. Azizpour, I. Laptev, Object detection using strongly-supervised deformable
part models, ECCV, 2012.

[18] L. Bourdev, S. Maji, T. Brox, J. Malik, Detecting people using mutually consistent
poselet activations, ECCV, 2010.

http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0021
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0005
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0010
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0015
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0020
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0025
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0030
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0035
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0040
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0045
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0050
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0055
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0060
http://caffe.berkeleyvision.org/
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0070
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0075


A. Papazoglou, L. Pero, V. Ferrari / Image and Vision Computing 52 (2016) 206–217 217

[19] C. Gu, P. Arbeláez, Y. Lin, K. Yu, J. Malik, Multi-component models for object
detection, ECCV, 2012.

[20] T. Malisiewicz, Ensemble of Exemplar-SVMs, implementation, 2011, https://
github.com/quantombone/exemplarsvm.

[21] S. Savarese, L. Fei-Fei, View synthesis for recognizing unseen poses of object
classes, ECCV, 2008.

[22] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, B. Schiele, L. Van Gool, Towards
multi-view object class detection, CVPR, 2006.

[23] L. Mei, J. Liu, A. Hero, S. Savarese, Robust object pose estimation via statistical
manifold modeling, ICCV, 2011.

[24] J. Liebelt, C. Schmid, K. Schertler, Viewpoint-independent object class detection
using 3D feature maps, CVPR, 2008.

[25] J. Liebelt, C. Schmid, Multi-view object class detection with a 3D geometric
model, CVPR, 2010.

[26] H. Su, M. Sun, L. Fei-Fei, S. Savarese, Learning a dense multi-view representation
for detection, viewpoint classification and synthesis of object categories, ICCV,
2009.

[27] L. Bourdev, J. Malik, Poselets: body part detectors trained using 3D human pose
annotations, ICCV, 2009.

[28] T. Brox, L. Bourdev, S. Maji, J. Malik, Object segmentation by alignment of
poselet activations to image contours, CVPR, 2011. pp. 2225–2232.

[29] W.-H. Kim, J.-N. Kim, An adaptive Shot Change Detection algorithm using an
average of absolute difference histogram within extension sliding window,
ISCE, 2009.

[30] A. Prest, C. Leistner, J. Civera, C. Schmid, V. Ferrari, Learning object class
detectors from weakly annotated video, CVPR, 2012.

[31] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, The PASCAL
Visual Object Classes Challenge 2012 (VOC2012) Results, 2012, http://www.
pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

[32] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid
matching for recognizing natural scene categories, CVPR, 2006.

[33] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, A.W.M. Smeulders, Selective
search for object recognition, Int. J. Comput. Vis.

[34] S. Belongie, J. Malik, J. Puzicha, Matching with shape contexts, IEEE Trans. PAMI
24 (4) (2002) 509–522.

[35] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, NIPS, 2012.

[36] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate
object detection and semantic segmentation, CVPR, 2014.

[37] ImageNet Large Scale Visual Recognition Challenge (ILSVRC), 2012, http://
www.image-net.org/challenges/LSVRC/2012/index.

[38] C.D. Manning, P. Raghavan, H. Schtze, Introduction to Information Retrieval,
Cambridge University Press 2008.

[39] A.S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN features off-the-shelf:
an astounding baseline for recognition, DeepVision workshop at CVPR, 2014.

[40] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf:
a deep convolutional activation feature for generic visual recognition, arXiv
preprint arXiv:1310.1531.

[41] C. Bishop, Pattern Recognition and Machine Learning, Springer 2006.
[42] A. Criminisi, J. Shotton, E. Konukoglu, Decision forests for classification, regres-

sion, density estimation, manifold learning and semi-supervised learning,
Microsoft Research Cambridge, Tech. Rep. MSRTR-2011-114.

http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0080
https://github.com/quantombone/exemplarsvm
https://github.com/quantombone/exemplarsvm
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0090
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0095
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0100
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0105
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0110
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0115
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0120
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0125
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0130
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0135
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0145
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0150
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0155
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0160
http://www.image-net.org/challenges/LSVRC/2012/index
http://www.image-net.org/challenges/LSVRC/2012/index
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0170
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0175
http://refhub.elsevier.com/S0262-8856(16)30075-0/rf0180

	Discovering object aspects from video 
	1. Introduction
	2. Related work
	2.1. Early work on aspects
	2.2. Aspect discovery
	2.3. Aspects in multi-view models
	2.4. Modelling pose variations with parts

	3. Aspect labels
	3.1. Part visibility labels
	3.2. Part configuration labels
	3.3. Distance between aspects

	4. Dataset
	4.1. Statistics

	5. Automatic aspect discovery from video
	5.1. Bag-of-Visual-Words descriptors
	5.1.1. Visual words
	5.1.2. Spatial support
	5.1.3. Spatial binning

	5.2. CNN descriptors
	5.2.1. Spatial support

	5.3. Clustering

	6. Evaluation of aspect discovery
	6.1. Protocol
	6.1.1. Clustering energy
	6.1.2. Clustering diversity

	6.2. Results
	6.2.1. Spatial binning
	6.2.2. Spatial support
	6.2.3. Descriptors
	6.2.4. Distance learning
	6.2.5. Summary of results


	7. Applications
	7.1. Aspect image retrieval
	7.1.1. Protocol
	7.1.2. Results

	7.2. Modelling aspect transitions

	8. Conclusions
	References


