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Abstract

We present a novel approach for tracking locally planar re-
gions in an image sequence and their grouping into larger
planar surfaces. The tracker recovers the affine transfor-
mation of the region and therefore yields reliable point cor-
respondences between frames. Both edges and texture in-
formation are exploited in an integrated way, while not re-
quiring the complete region’s contour. The tracker with-
stands zoom, out-of-plane rotations, discontinuous motion
and changes in illumination conditions while achieving
real-time performance for a region. Multiple tracked re-
gions are grouped into disjoint coplanarity classes. We first
define a coplanarity score between each pair of regions,
based on motion and texture cues. The scores are then ana-
lyzed by a clique-partitioning algorithm yielding the copla-
narity classes that best fit the data. The method works in the
presence of perspective distortions, discontinuous planar
surfaces and considerable amounts of measurement noise.

1. Introduction

Histogram-based region trackers have proven to run in real-
time [6, 4]. The results of these trackers are impres-
sive, but for some applications they lack certain properties.
Firstly, they don’t provide point correspondences under ro-
tation. Secondly, they achieve high performance by con-
sidering a low dimensional search space for the region de-
formations during tracking (e.g. translation and size only),
and are therefore unable to correctly handle the skew and
anisotropic scaling effects caused by out-of-plane rotation.
On the other hand, trackers that deal with the full set of
affine motion parameters have been proposed [3, 13], but
they rely on heavier techniques which makes them slow.
Moreover, they often need the complete region’s contour,
what strongly limits the number of regions that can be
tracked in a scene.

We present a region tracker that combines these two ma-
jor properties: it tracks a region under complete affine de-
formation at real-time speed. Moreover, the tracker does
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not need closed contours in the images themselves to de-
fine the regions; it can deal with large displacements be-
tween subsequent frames, and it can recover from a tem-
porary loss of the region. These properties are based on a
particular way of searching the affine transformation space
which exploits the nature of the two types of regions we are
considering. By recovering the complete affine transforma-
tion, the tracker yields reliable point-wise correspondences
as the region evolves. This is very useful for a number of
applications.

In the second part of the paper, we investigate one such
application: the detection of planar structures from video
sequences. Planes play an important part in 3D reconstruc-
tion (e.g. buildings and indoor scenes). Parallax-based
scene analysis methods [9, 7] and some special reconstruc-
tion techniques [5] need a reference plane. Navigation sys-
tems need to find free floor space, etc. For the detection of
the planar structures, the set of all tracked regions is par-
titioned into disjoint coplanarity classes. Each class cor-
responds to a distinct plane in 3D space. Neither the size
nor the number of classes is known beforehand. The basic
grouping unit is the pair: with the selected, affine region
model providing three independent coplanar points per re-
gion, a pair of regions is the smallest set sufficient for con-
sidering general planar motions (homographies). We define
a coplanarity score between each pair of regions, based on
the combination of a planar motion compatibility cue and
a novel texture cue. The cues are computed from the point
correspondences generated by the tracker. The score con-
veys information about the probability that the regions lie
on the same plane. We exploit the intrinsic transitivity of the
coplanarity property to resolve grouping ambiguities aris-
ing from noisy scores by formulating the coplanar group-
ing problem in Clique Partitioning [8] terms. This formula-
tion offers an elegant approach for the treatment of general
grouping problems. We introduce a simple, but effective,
polynomial time heuristic for its solution.

The structure of the paper is as follows. Section 2 de-
scribes the regions that are the basis for the tracking. Sec-
tion 3 describes the tracker. Section 4 discusses the copla-
nar grouping of the tracked regions. Section 5 shows some
experimental results. Section 6 concludes the paper.



2. Affinely invariant regions
Tuytelaars and Van Gool [12] have proposed a method
for the automatic extraction and wide-baseline matching of
small, planar regions. These regions are extracted around
anchor points and are affinely invariant: given the same
anchor point in two images of a scene, regions covering
the same physical surface will be extracted, in spite of
the changing viewpoint. We deal with two of their region
types (figure 1): parallelogram-shaped (anchored on corner
points) and elliptical (anchored on local intensity extrema).
The former are based on two straight edges intersecting in
the proximity of the corner. This fixes a corner of the par-
allelogram (call it c) and the orientation of its sides. The
opposite corner (call it q) is fixed by computing an affinely
invariant measure on the region’s texture. Elliptical regions
are extracted based on the intensity profile along rays ema-
nating from the intensity extremum, without needing edges.

Because of the nature of their respective anchor points
and extraction methods, these two types complement each
other well and experiments show that hundreds of uniformly
distributed regions can be extracted from images of typical
indoor and outdoor scenes.

One of the advantages of using these invariant regions is
that tracked regions that have been lost due to large occlu-
sions can be recovered by reverting to the matching tech-
niques proposed by Tuytelaars and Van Gool (albeit not yet
considered in this paper).

Figure 1: A parallelogram-shaped and an elliptical region.

3. Region tracking
Both the geometry-based and intensity-based regions are
tracked using the same scheme. In the following we con-
sider tracking a region R from a frame F i−1 to its successor
frame Fi in the image sequence. First we compute a pre-
diction R̂i = Ai−1Ri−1 of Ri using the affine transforma-
tion Ai−1 between the two previous frames. An estimate
âi = Ai−1ai−1 of the region’s anchor point1, is computed,
around which a circular search space Si is defined. The
radius of Si is proportional to the current translational ve-
locity of the region. The anchor points in S i are extracted.

1Harris corners for geometry-based regions and intensity extrema for
intensity-based regions

These provide potentially better estimates for the region’s
location. We investigate the point closest to âi looking for
the target region Ri. The anchor point investigation al-
gorithm differs for parallelogram-shaped and elliptical re-
gions and will be explained in the two following subsec-
tions. Since the anchor points are sparse in the image, the
one closest to the predicted location is, in most cases, the
correct one. If not, the anchor points are iteratively inves-
tigated, from the closest (to âi) to the farthest, until Ri is
found. This first pruning of the search space helps achiev-
ing high speed while keeping the radius of S i wide enough
to ensure tolerance to large image displacements. In some
cases it is possible that no correct Ri is found around any
anchor point in Si (e.g.: occlusion, sudden acceleration,
failure of the anchor point extractor). When this happens the
region’s location is set to the prediction (ai = âi), and the
tracking process proceeds to the next frame, with a larger
S. In most cases this allows to recover the region in one
of the next few frames, while avoiding the computationally
expensive process of searching Fi further.

3.1. Parallelogram-shaped regions
Given a corner point h, the region prediction R̂i, and the
region in the previous frame Ri−1 we want to test if Ri is
anchored to h and, in that case, extract it. The idea is to
construct at h the region most similar to Ri−1. The process
follows two steps. The first tracks two of the straight region
sides exploiting the geometric information (edges) of the
image, and already yields partial information about R i. The
second step starts from the output of the first, and completes
Ri by exploiting intensity information (texture).

In the first step a polyline snake with three-vertices re-
covers two of the sides, but not yet their lengths. We ex-
ploit the fact that translating R̂i so that ĉ = h automatically
provides an estimation of the sides. We initialize the center
vertex vc of the snake at h and the other two vertices v1,v2

so that the line segments vcv1 and vcv2 have the orienta-
tion of the predicted region sides (figure 2). The three points
are iteratively moved in order to maximize the total sum of
gradient magnitudes along the two line segments:

ES(vc,v1,v2) =
∑

p∈vcv1

| � I(p)| +
∑

p∈vcv2

| � I(p)|

where | � I(p)| is the image gradient magnitude at pixel
p. The snake can deform only by hinging around v c and
the length of the line segments is kept fixed (we are inter-
ested in their orientation only). These constraints reduce the
number of DOF to four, thereby reducing the search space
and improving efficiency.

The optimization process is efficiently implemented by a
Dynamic Programming algorithm inspired by [1, 14]. The
algorithm has a higher probability of being attracted toward
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Figure 2: Left: Polyline snake initialization. Right: q̂ ini-
tialization.

contours than the traditional snake implementation [10],
and it is ensured to converge [1]. In practice h is often very
close (a few pixels) to the intersection point c of the target
region sides. Hence our initialization is often very good and
this reduces the number of iterations and the risk of being
attracted by nearby distractor edges.

The tracked region sides lift four DOF: the two coordi-
nates of c = vc and the orientations of the two sides. These
correspond to the translation, rotation and skew components
of the affine transformation Ai mapping Ri−1 to Ri. This is
all the information we can extract from the geometric fea-
tures of the image. The two remaining DOF correspond to
the position of the point q (they arise from the scale com-
ponents of Ai) and are derived from the texture content of
the region by the second step of the algorithm.

An initial estimate q̂ is obtained by aligning R̂i on the
structure formed by v1,vc,v2, so that ĉ = vc and the
sides are oriented like vcv1, vcv2 (figure 2). This estima-
tion is refined by moving q̂ so as to maximize the similarity
between the resulting region Ri(q̂) and the region in the
previous frame Ri−1. As a similarity measure we use the
normalized cross-correlation between Ri−1 and Ri(q̂) after
aligning them via A(q̂), the affine transformation mapping
Ri−1 onto Ri(q̂). Therefore, q is obtained as the location
of q̂ maximizing the objective function:

Ec = CrossCorr(A(q̂)Ri−1, Ri(q̂)) (1)

Notice that this similarity measure is invariant not only un-
der geometric affine transformations, but also under linear
transformations of the pixels intensities. This makes the
tracking process relatively robust to changes in illumination
conditions. The maximization process is implemented by
Gradient Descent, initialized on q̂, where at each iteration
q̂ is moved 1 pixel in the direction of maximal increase.
Typically q̂ is initialized close to the absolute maximum,
because most of the variability of the affine transformation
is lifted by the sides tracking step. This strongly reduces
the risk of converging toward a local maximum and keeps
the number of iterations low. Extensive experiments con-
firm this consideration and indicate that, in most cases, 3
iterations are enough.

At the end of the second step, the most similar region to
Ri−1 anchored to h is constructed. This does not mean that
it is the correct region though, as h could just be the wrong
corner. Hence, as final verification we check if the maxi-

mum cross-correlation value is above a predefined thresh-
old (typically 0.9), otherwise the algorithm proceeds to the
next corner.

3.2. Elliptical regions
Let us now focus on the elliptical regions. Given an inten-
sity extremum i, the region prediction R̂i and the region in
the previous frame Ri−1, is Ri anchored to i ? Since the
elliptical regions of [12] exploit only the raw intensity pat-
tern of the image and do not rely on the presence of nearby
edges, we can no longer devise a two-step search strategy
like for the parallelogram-shaped case. A natural alterna-
tive would be to look for the complete set of 6 parameters of
Ai simultaneously, by minimizing a cross-correlation based
criteria similar to equation (1) (as proposed in [3]). The
search process could be initialized from the affine trans-
formation Ai−1 between the two previous frames (possibly
translated so that c = i). The problem is that searching
for an optimum in this six-dimensional space, starting from
an imprecise initialization, would probably take too much
computation power to be achieved in real-time.

We exploit instead the property that Ri can be extracted
from Fi independently, provided we are considering the
correct intensity extremum. In a first step, Ri is extracted
around i using an optimized implementation of the algo-
rithm described in [12]. The second step could consist of
verifying that Ri cross-correlates with Ri−1 above a prede-
fined threshold. Unfortunately, since an ellipse has only five
DOF, it is not possible to directly compute Ai from Ri−1

and Ri. The missing DOF corresponds to a free rotation
in the ellipse plane around its center. We want to avoid the
approach of [12], which consists of an exhaustive search
for the rotation maximizing the cross-correlation, because
of its inefficiency. We propose an alternative based on a
photometric invariant version of the axis of inertia. First
R̂i is affinely mapped to a reference circular region O. The
major and minor axes of inertia are then extracted (figure 3)
as the lines passing from the center of O with orientations
θmax, θmin defined by the solutions of:

tan2(θ) +
m20 −m02

m11
tan θ − 1 = 0 (2)

with mpq the (p, q) order moment centered on the region’s
geometric center. Equation (2) differs from the usual defi-
nition of the axis of inertia by the use of these moments in-
stead of moments centered on the center of gravity weighted
with image intensity. This makes them invariant to affine
changes of the intensities. These axes are invariant under
rotation, in the sense that they will cover the same part of
the region after a rotation. Mapping the axis back to the
original elliptical region will now provide two affinely in-
variant lines, and their intersection points with the ellipse.
The mapping of the center of the ellipse and these inter-
sections allow us to compute Ai; the cross-correlation test



Figure 3: From left to right: original elliptical region;
mapped to circular region; axes of inertia in circular re-
gion; axes mapped back to elliptical region.

can follow and, if failed, the tracker can proceed to the next
intensity extremum.

4. Coplanar grouping
In this section, the coplanarity cues and score are in-
troduced (subsection 4.1), followed by an alternative
graph-theoretic approach (subsection 4.2) ensuring effec-
tive coplanar grouping. Note that from now on, perspective
effects are fully taken into account. This is important, since
the affine approximation is only valid on a local scale.

4.1. Coplanarity cues and score
Let R,S be two regions tracked in n frames. Consider
three points r1

i , r
2
i , r

3
i characterizing R in frame Fi. If R

is parallelogram-shaped, these are three corners (all but q).
In the elliptical case, these are the center c and the two in-
tersections of the axes of inertia with the ellipse.{rp

i }p=1..3

completely define R in Fi and the correspondences between
{rp

i } and {rp
j} implicitly encode the affine transformation

of R between frames Fi, Fj . We assume analogous defini-
tions for S.

We introduce two numerical coplanarity cues that will
later be integrated in a single coplanarity score. The first
cue is purely based on the motion of R and S between the
first and last frames (F1, Fn). We compute by least squares
approximation the 2D homography H that best maps the 6
points in F1 (the set {rp

1}p=1..3 ∪{sp
1}p=1..3) to their corre-

sponding points in Fn (the set {rp
n}p=1..3 ∪ {sp

n}p=1..3). If
R,S are coplanar, H correctly describes the motion of both
regions. We measure this via the following error:

cm =
1
6

3∑
i=1

(d(Hr1
i , rn

i ) + d(Hs1
i , sn

i )) (3)

where d(p1,p2) is the euclidean distance between points
p1,p2. Assuming noise-free data, if R,S are coplanar
cm = 0; cm is related to the difference between the position
and orientation of the R plane and the S plane in 3D space.
Hence we use expression (3) as a cue about the potential
coplanarity of two regions: the smaller cm, the higher the
chances of R,S being coplanar.

While the motion cue is based completely on local in-
formation, the second cue takes a larger view and considers
the image data between R and S. The idea is to check if
R,S are coplanar and located on a continuous, unoccluded

Figure 4: Top: Non-coplanr pair of regions. Bottom: Other
view. The central line segment is misaligned.

physical planar surface in 3D space. In order to take into
account a small, but representative, sample of the surface
between R and S we consider three lines connecting cor-
responding characteristic points of the two regions.To keep
the notation simple, we restrict the explanation to the first
line. Consider the line l1 connecting the first characteristic
points R1

1, S
1
1 of the two regions in the first frame. Divide

l1 in s = d(R1
1, S1

1)
m segments of equal length m, denote

them {lj1}j=1..s. Let {ljn}j=1..s be a list of segments in Fn,
whose coordinates are obtained by projecting {l j

1}j=1..s via
H. We are interested in the similarity between correspond-
ing segments in the two frames, and in particular in the least
similar one:

min
j=1..s

CrossCorr(lj1, ljn) (4)

where CrossCorr(lj1, ljn) is the value of the normalized
cross-correlation of the intensity profile on line segment l i

1

with the one on ljn. Only if R,S are coplanar and located
on a continuous, unoccluded planar surface, will all seg-
ments score well. If R,S are not coplanar, segments close
to the region may still score well: H describes the motion in
that zone best, and probably the neighboring area is planar.
Nevertheless, central segments will tend to be misaligned
as H can not correctly describe their motion, and therefore
have low scores (figure 4). Taking the least scoring segment
ensures the detection of exactly those significant cases.

We define the second coplanarity cue ct as the average
of expression (4) over the three lines connecting r1

1 with
s1
1, r2

1 with s2
1 and r3

1 with s3
1. Coplanar pairs located on

a discontinuous planar surface (e.g.: the surface is inter-
rupted between the two regions) will tend to have a low c t;
clearly, this should not be interpreted as an indication that
two regions are not coplanar. Hence, we use c t only to in-
crement the total coplanarity score. Nevertheless the role of
this cue must not be underestimated, as we expect it to sub-



stantially reinforce the total score of a significant portion of
the coplanar pairs, hence helping the forthcoming grouping
algorithm.

From the above considerations, we define the copla-
narity score of a pair:

w = (ht − cm) +
{

ctht if ct > 0.6
0 otherwise

(5)

where ht > 0 is an homography error threshold, acting like
a splitting point between positive and negative scores (w <
0 suggests that R,S are not coplanar, while w ≥ 0 suggests
they are) and defining the maximal positive contribution of
each cue. The range of w is ]−∞, 2ht]. In practice though,
forht = 2.0 scores above 1.0 already indicate very probable
coplanarity.

4.2. Grouping algorithm
Taken one by one, the coplanarity scores are unreliable be-
cause they arise from very limited, noisy information. In
practice it happens that a coplanar pair has w < 0 (false
negative), and the contrary (false positive). Nevertheless,
taken altogether, the scores clearly contain reliable infor-
mation about the correct grouping. We want to be robust to
misleading local information by exploiting the transitivity
of coplanarity: if R,S are coplanar and S, T too, then R, T
must be coplanar2. How can transitivity help us ? Consider
a scene with three regions. Let wij be the score of the pair
(i, j) composed of the ith and jth region. Given the scores
w12 = 9, w13 = 7, w23 = −3, and the transitivity property,
the best choice is to group the three regions together (w23

is a false negative score). Next, we formulate the coplanar
grouping problem so as to exploit transitivity to detect and
avoid false scores .

We propose to construct a complete graph G where each
vertex represents a region and edges are weighted with the
coplanarity scores. We partition G into completely con-
nected disjoint subsets of vertices (cliques) so as to maxi-
mize the total score on the remaining edges (Clique Parti-
tioning, or CP). The transitivity property is ensured by the
clique constraint: every two vertices in a clique are con-
nected, and no two vertices from different cliques are con-
nected. Hence, the generated cliques correspond to the best
possible coplanar grouping (given the cues). The CP formu-
lation of coplanar grouping is made possible by the presence
of positive and negative weights: they naturally lead to the
definition of a best solution without the need of knowing the
number of cliques (planes) or introducing any artificial stop-
ping criteria like in other graph-based approaches to group-
ing based on strictly positive weights [11, 2]. On the other
hand, our approach needs a parameterh t that determines the
splitting point between positive and negative scores. But, in

2Coplanarity is reflexive, symmetric and transitive (an equivalence re-
lation).
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Figure 5: An example graph and two iterations of CP. Not
displayed edges have zero weight.

our context, this parameter is easily determined and exper-
iments show the optimal solution of CP to be generated for
a wide range of ht.

CP can be solved by Linear Programming [8] (LP). Let
wij be the weight of the edge connecting (i, j), and x ij ∈
{0, 1} indicate whether the edge exists in the solution. The
following LP can be established:

maximize
∑

1≤i<j≤n wijxij

subject to xij + xjk − xik ≤ 1, ∀ 1 ≤ i < j < k ≤ n
xij − xjk + xik ≤ 1, ∀ 1 ≤ i < j < k ≤ n
−xij + xjk + xik ≤ 1, ∀ 1 ≤ i < j < k ≤ n
xij ∈ {0, 1}, ∀ 1 ≤ i < j < k ≤ n

(6)
The inequalities express the clique constraints (transitivity),
while the objective function to be maximized corresponds
to the sum of the intra-clique edges. Unfortunately CP is
an NP-hard problem [8]: LP (6) has worst case exponential
complexity in the number n of vertices (regions), making it
impractical for large n.

The challenge is to find a practical way out this com-
plexity trap. The correct partitioning of the example in fig-
ure 5 is {{1, 3}, {2, 4, 5}}. A simple greedy strategy merg-
ing two vertices (i, j) if wij > 0 fails because it merges
(1, 2) as its first move. Such an approach suffers from two
problems: the generated solution depends on the order by
which vertices are processed and it looks only at local infor-
mation. We propose the following iterative heuristic. The
algorithm starts with the partition Φ = {{i}}1≤i≤n com-
posed of n singleton cliques each containing a different ver-
tex. The function m(c1, c2) =

∑
i∈c1,j∈c2

wij defines the
cost of merging cliques c1, c2. We consider the functions
b(c) = maxt∈Φ m(c, t) and d(c) = arg maxt∈Φ m(c, t)
representing, respectively, the score of the best merging
choice for clique c and the clique with whom to merge. We
merge cliques ci, cj if and only if d(ci) = cj and d(cj) = ci

and b(ci) = b(cj) > 0. In other words, two cliques are
merged only if each one represents the best merging option
for the other and if merging them increases the total score.
At each iteration the functions b(c), d(c) are computed, and
all pairs of cliques fulfilling the criteria are merged. The
algorithm runs until no two cliques can be merged.

Figure 5 shows an interesting case. In the first itera-
tion {1} is merged with {3} and {4} with {5}. Notice



how {2} is, correctly, not merged with {1} even though
m({1}, {2}) = 3 > 0. In the second iteration {2} is
correctly merged with {4, 5}, resisting the (false) attrac-
tion of {1, 3} (b({1, 3}, {2}) = 1, d({1, 3}) = {2}).
The algorithm terminates after the third iteration because
m({1, 3}, {2, 4, 5}) = −3 < 0. The second iteration shows
the power of CP. Vertex 2 is connected to unreliable edges
(w12 is false positive, w25 is false negative). Given ver-
tices {1, 2, 3} only, it is not possible to derive the correct
partitioning {{1, 3}, {2}}; but, as we add vertices {4, 5},
the global information increases and CP manages to get the
correct partitioning out of it.

The proposed heuristic is order independent, takes a
more global view than a direct greedy strategy, and resolves
several ambiguous situations while maintaining polynomial
complexity (worst case O(n3), but faster in practice). In the
first iterations, being biased toward very positive weights,
the algorithm risks to take wrong merging decisions. Nev-
ertheless our particular merging criterion ensures this risk to
quickly diminish with the size of the cliques in the correct
solution (number of regions in a plane) and at each iteration,
as the cliques grow and increase their resistance against
spurious weights. Moreover, in our application, very pos-
itive scores arise only when both cues score well and are
therefore much more reliable than negative scores, which
are often due to large homography errors due to measure-
ment noise. In summary, the algorithm uses reliable data as
seeds, and then proceeds to the robust construction of the
correct solution by filtering out spurious data.

5. Experiments
5.1. Tracking

We present two sequences demonstrating the tracker’s qual-
ities. In both sequences, the images of the tracked pla-
nar patches are put into complete correspondence along the
frames. This allows to derive three reliable point correspon-
dences per region between any pair of frames.

The Book sequence (figure 6) features a parallelogram-
shaped and an elliptical region undergoing simultaneous ro-
tation and scaling. The physical planar patch covered by
each region is accurately tracked along the sequence, as
proven by the constant high cross-correlation scores (fig-
ure 6). The axes of inertia of the elliptical region reliably
follow the rotation of the book. The computational perfor-
mance3 meets the real-time expectations (figure 6). With an
average cost per frame of 0.018 seconds, the parallelogram-
shaped region is tracked particularly efficienlty. The dif-
ference with the elliptical one (average 0.034 seconds per
frame) is mostly due to the different (and currently slower)
algorithm needed for the anchor point extraction.

3All experiments performed on a Sun UltraSparc-IIi, 440 MHz.
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Figure 6: Two frames of the Book scene. Bottom left: sec-
onds (y axe) to track each frame (x axe) for parallelogram-
shaped region (thick) and elliptical one (thin; peak corre-
spond to a temporary loss). Bottom right: cross-correlation
scores.

Control of out-of-plane rotation and robustness to dis-
continuous motion are exemplified in the Poster sequence
(figure 7). The region rotates significantly around the verti-
cal axis, causing skew and anisotropic scaling effects in the
image. The tracker was able to handle this situation by cor-
rectly transforming the 2D region’s shape: despite the very
different viewpoints of frames 1 and 200, the region is cov-
ering the same physical surface. In our application, this is
a required feature: the region deformation yields precious
information about a plane orientation. As it was taken with
a handheld camera, the sequence contains a certain amount
of irregular motion: the region sometimes bruskly changes
direction and velocity, making it hard to predict the next lo-
cation accurately. Moreover, we increased the average ve-
locity even further by subsampling the sequence to contain
only every fourth frame. The total effect is a very discon-
tinuous motion (irregular and fast) where the region moves
fast between each frame and where the predicted location
is often far from the correct one. The tracker successfully
managed to find the region in every frame despite predic-
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Figure 7: First and last frames of the Poster scene. Bottom-
left: seconds per frame; bottom right: prediction error
(thick) and velocity.

tions that were off by up to 20 pixels from the target (figure
7). The sequence was processed in 0.022 seconds per frame
on average, and only in two frames the tracker needed more
than 0.034 seconds (peaks in figure 7).

The ability to track fast moving regions is important
when the whole sequence is available beforehand (offline
tracking): by considering only a fraction of the frames,
substantial reductions of the computational costs can be
achieved. For online tracking, this allows to track several
regions simultaneously.

The experiments confirmed that the tracker efficiently
provides the reliable and accurate point correspondences
needed by our application under general motion conditions.

5.2. Grouping
The coplanar grouping algorithm has been tested on several
scenes; we exemplify its performance by the scene in figure
9. We consider 12 regions: 3 on the Artificial Intelligence
book in the middle of the scene (AI plane), 4 on the journals
lying on the table (Table plane) and 5 on the two cardboard
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Figure 8: Left: False score percentage in function of ht in
the complete scene case. Right: AI and Box case.

boxes on the background (Box plane). The scene presents
many difficulties: the Table and Box planes are not visible
as continuous planar surfaces, the Table plane shows con-
siderable perspective effects, the AI plane is slanted and in-
tersects the table in the image. Moreover, the camera moves
little during the sequence, resulting in a tight baseline and
therefore less motion information for our cues. However, it
is the small region at the bottom of AI that makes this scene
particularly challenging. Since it is located very close to
the Table regions and the two planes orientations (at the lo-
cal scale) are similar, its motion is compatible with the Ta-
ble motion, and the coplanarity scores are positive whereas
they should be negative. Based on this local information
only, we could not separate it from the Table regions.

Despite these difficulties, the algorithm produced the
correct grouping, and exploited the attraction of the topmost
AI regions to bring the bottom one in place. The correct so-
lution for the whole scene was produced for h t ranging in
[1.4, 2.3], which is a considerably wide interval, consider-
ing that the homography error for all pairs formed by re-
gions in AI and Table ranges from 0.6 to 3.0. For h t < 1.4
the AI plane was split (i.e.: not all AI regions were grouped
together), and for ht > 2.3 AI was merged with Table. As
shown by figure 8, picking values for h t far from the opti-
mimum causes a deterioration of the coplanarity score, re-
sulting in an increase of false scores (i.e.false positives and
false negatives scores). Nevertheless, the algorithm resisted
even significant increases: for ht = 2.3, 24% of the copla-
narity scores are false, with the grouper still delivering the
correct partitioning. The range of h t yielding the correct so-
lution is even wider in simpler cases; considering only the
AI and Box regions, this is ht ∈ [1.4, 4.5]. For ht = 4.5,
32% of the scores are false. Again, this is a wide inter-
val, given the homography errors for this scene ranges in
[1.18, 5.22]. These figures show Clique Partitioning’s abil-
ity to extract the correct information in the presence of con-
siderable amounts of noise. We verified the correctness of
the clique paritioning solutions provided by our heuritstic
by solving the problem also with LP. In both cases (com-
plete scene, only AI and Box), for all values of h t, LP gen-
erated the same solutions.

Various experiments on several scenes reinforce the re-



Figure 9: First and last frame of test sequence for coplanar
grouping. Notice the moderate baseline.

ported observations about the ht ranges for which the cor-
rect solution is produced; hence we assert our algorithm is
little sensible to the exact choice of ht. Setting ht = 2.0
resulted in correct partitioning of almost all scenes.

Finally, we tested both LP and our heuristic on random
instances of the clique partitioning problem. We generated
100 times a 21 vertices graph consisting of 3 cliques of
7 vertices each; intra-clique weights were uniformly dis-
tributed in [−3, 9], while inter-clique weights in [−9, 3].
On the average, the number of missclassified vertices was
very low: 0.5 for LP and 0.51 for the heuristic. Both al-
gorithms produced the same partitioning (either correct or
wrong) 96% of the times. The average percentage of false
scores, computed over the set of correctly solved instances,
was 24.92% (expected 25%). These encouraging results
show CP robustness to noise and support our heuristic as
a qualitative approximation.

6. Conclusions
In this contribution, a real-time affine region tracker was
proposed. Among its most important features are its ro-
bustness to large out-of-plane rotations and discontinuous
motion, its speed and the fact that it brings the tracked re-
gions into complete correspondence. This last property is
especially useful for the application described in the second
half of the paper, where a robust method for grouping copla-
nar regions based on Clique Partitioning was proposed. A
simple, but effective, polynomial time heuristic was intro-
duced, that proved to yield the correct optimal solution in
most practical situations. Although demonstrated on the ap-
plication of coplanar grouping, the grouper is by no means
restricted to this application.
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