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Abstract

We present a new approach to appearance-based object
recognition, which captures the relationships between mul-
tiple model views and exploits them to improve recognition
performance.

The basic building block are local, viewpoint invariant
regions. We propose an ef�cient algorithm for partitioning
a set of region matches into groups lying on smooth surfaces
(GAMs). During modeling, the model views are connected
by a large number of region-tracks, each aggregating im-
age regions of a single physical region across the views. At
recognition time, GAMs are constructed matching a test im-
age to each model view. The consistency of con�gurations
of GAMs is measured by exploiting the model connections.
The most consistent con�guration, covering the object as
completely as possible is found by a genetic algorithm. In-
troducing GAMs as an intermediate grouping level facili-
tates decision-making and improves discriminative power.

As a complementary application, we introduce a novel
GAM-based two-view �lter and demonstrate its effective-
ness in recovering correct matches in the presence of up to
96% mismatches.

1. Introduction
In the last few years, object recognition (OR) approaches
based on local viewpoint invariant features have become in-
creasingly popular. In the common basic scheme [11, 6, 7,
5], small regions are extracted independently from a model
and a test image in a viewpoint invariant way, then charac-
terized by invariant descriptors and �nally matched. The
object is recognized if a suf�cient number of matches is
found. The power of these methods is twofold. First, lo-
cal features bring tolerance to clutter and occlusions. Sec-
ond, the extractors and descriptors are invariant under af�ne
transformations, allowing large viewpoint changes.

When several model views of an object are available,
most systems match the test image to each model view inde-
pendently, and then just select the best one or consider the
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total number of matches [4]. Only few earlier works cap-
ture and exploit the relationships among the model views.
In [5], the model views are �rst clustered, and links are
made between corresponding features in adjacent views. By
following the links, a feature from the test image votes for
the view to which is matched, and for the adjacent ones.
The system gains robustness, because the votes are not dis-
persed among similar model views. In [8], a higher degree
of integration is reached by building a 3D model of the ob-
ject, prior to recognition. In this paper, we present a new
approach which effectively integrates the contributions of
multiple model views. It reaches a deeper level of integra-
tion than [5], without requiring the construction of a 3D
model. This has the advantage that the selection of model
views is far less constrained. Indeed, not all features needto
be visible in at least two or three views (but we exploit this
overlap whenever it occurs). Moreover, there is no danger
of degenerate cases such as views showing only a single pla-
nar part. As an additional advantage, our method is capable
of recognizing objects undergoing non-rigid deformations.

The main ingredient of our approach is the novel con-
cept of agroup of aggregated matches(GAM). A GAM
is a set of region matches between two images, which are
distributed over a smooth surface of the object/scene. The
GAM idea is similar in spirit to the work of Selinger and
Nelson [9], who advocate the bene�ts of an intermediate
perceptual grouping level between primitives and views.
Unlike in their work, here the primitives being grouped are
region matches, rather than contour fragments. Moreover,
GAMs are inherently a two-view concept, whereas contour
fragments are de�ned in individual views. A set of matches,
including anarbitrary amount of mismatches, can be par-
titioned into GAMs (section 2). The obtained GAMs have
two fundamental properties. First, a GAM is nearly always
'pure', i.e.: composed only of correct matches or only of
mismatches. Second, the number of matches in a GAM re-
lates to its probability of being correct. If a GAM is com-
posed of many region matches (typically more than 5), it
is very probably correct, whereas if it has only a few, it
is usually incorrect. When evaluating the correctness and
structure of sets of matches, it is convenient to reason at
the higher perceptual grouping level that GAMs offer: no



longer consider unrelated region matches, but the collection
of GAMs instead. GAMs become the atomic unit, and their
sizes is a precious piece of information. Moreover, the com-
putational complexity of a problem can be reduced, because
there are far less relevant GAMs than region matches.

We now give an overview of the proposed OR system.
During modeling, the model views are densely connected
by a number ofregion-tracks. Each region-track connects
the image regions of a certain physical surface patch across
the views (section 4). At recognition time, we match each
model view to the test image and partition the resulting sets
of matches into GAMs (section 5). The matching is per-
formed by the method of [4], which densely covers the ob-
ject with matches and allows non-rigid deformations. The
image area covered by the dense set of matches also pro-
vides a segmentation of the object. The coherence of a
con�gurationof GAMs, possibly originating from different
model views, is evaluated using the region tracks that span
the model views, and assigned a score (subsection 5.3). We
maximize the score function over all possible con�gurations
with a Genetic Algorithm (subsection 5.4). The maximal
score represents the system's con�dence in the presence of
the object and strongly increases in presence of compati-
ble GAMs. In this fashion, the system's ability to discrimi-
nate between objects improves over the simple approach of
counting the total number of matches to all model views.
As another advantage, incorrect GAMs are discovered be-
cause they do not belong to the best con�guration. These
improvements are demonstrated in the result section 6.

As a complementary application, GAMs are very useful
also in the context of robust wide baseline stereo match-
ing. In section 3, we propose a GAM-based �lter which is
largely insensitive to the percentage of correct matches. We
show that the �lter is capable of recovering correct matches
in sets containing up to 96% mismatches.

2. GAM
This section describes an incremental grouping algorithm to
partition a set of matches between two images into GAMs.
The matches can be generated by any af�ne invariant region
matcher such as [11, 6, 7].

2.1 Af�ne dissimilarity

The grouping process is driven by the similarity between
the geometric (af�ne) transformations that map the regions
from one view to another. Consider 3 points on each region:
the centerp0 and two more pointsp1; p2 on the boundary.
These points have previously been put in correspondence by
the matching algorithm. The following function measures
to which degree the af�ne transformation of a regionR is
also valid for another regionQ (�gure 1):
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Figure 1:Af�ne dissimilarity. d is one term in function (1).

whereAR a ! R b is the af�ne transformation mappingR
from viewa to viewb, andR i

v is pointpi of regionR in view
v. By averaging over the two regions, we obtain theaf�ne
dissimilarityD s(R; Q) = 1

2 (D (R; Q)+ D(Q; R)) between
(the af�ne transformations of)R andQ. This measure is
symmetric in the regionsandin the views. This brings sta-
bility and helps dealing fairly with large scale changes. Two
region matches have a high dissimilarity if either is a mis-
match, or if they lie on different surfaces.

2.2 Constructing GAMs

The matches are partitioned by the following algorithm,
which starts a GAM from a single match and then grows
it by iteratively adding matches. The algorithm takes as in-
put the set
 of region matches.

1. A region match is removed from
 and used to create
a new GAM.

2. Search
 for a region with af�ne dissimilarity to the
GAM below a certain threshold1. The search proceeds
from the region which is spatially closest to the GAM,
to the spatially farthest. The spatial distance of a re-
gion to the GAM is the average Euclidean distance to
the composing regions, measured in the �rst view. The
af�ne dissimilarity between a region and the GAM is
the weighted mean of the af�ne dissimilarities to each
region in the GAM. The weights are set inversely pro-
portional to the square of the distances between the re-
gions , and sum up to 1.

3. As soon as a suitable region is found, it is added to
the GAM and the search stops. The region is removed
from 
 , and the algorithm iterates to 2. If no such
region is found, the current GAM is closed. The algo-
rithm goes back to 1, where a new GAM is created and
then grown. The process terminates when
 is empty.

The algorithm groups two regions in the same GAM if they
have a similar af�ne transformation or if there is some re-
gion with coherent intermediate af�ne transformation spa-
tially located between them. In other words, the af�ne
transformation can vary gradually from a region to the next
within a GAM. Hence, a GAM can cover not only a planar,
but also a curved or even a continuously deformed surface

1This is the only parameter, and it is set to1=15 of the image size.



(like bending of paper or cloth). The fact that the method
doesn't prescribe a �xed neighborhood area where to grow
renders it capable of grouping also spatially sparse and dis-
contiguous subsets of correct matches.

In principle, the composition of a produced GAM might
depend on the choice of its �rst region in step 1. How-
ever, the near-to-far growing order and the distance-based
weighting make the algorithm highly order independent. In
our experiments the composition of the GAMs was stable
(variations of about 1%) in spite of random permutations of
the input regions.

The GAM decomposition has twofundamental proper-
ties. First, it is unlikely for mismatches to form large GAMs
(more than 4-5 matches). Mismatches have independent,
widely varying, inconsistent af�ne transformations because
they are randomly spread in the large 6D af�ne transforma-
tion space. The chances thatN mismatches have tranfor-
mations varying slowly and gradually from one to the next
quickly drop with N . On the other hand, several correct
matches lying on the same surface will form a larger GAM.
If a GAM is composed of many matches, these are very
probably correct. Second, a GAM is most often composed
of either only correct matches or only mismatches. This is
because when growing a correct GAM it is unlikely for a
mismatch to offer a suitable transformation. Even if this
happens, the chances to add a second mismatch are again as
low. As a consequence, typically mismatches are scattered
over many small GAMs, while correct matches concentrate
in a few larger GAMs. This brings a major advantage of
organizing matches into GAMs: the number of matches in
a GAM provides an indication of their probability of being
correct. Moreover, the larger a GAM is, the more relevant
it is, because it covers a larger part of the scene/object.

To validate the two fundamental properties, we have
matched 14 image pairs, run the GAM constructor, and
measured size and composition of all resulting GAMs. The
total 2253 region matches have been partitioned into 1428
GAMs. 50 of them contain all 415 correct matches (correct
GAMs), while the other GAMs have only mismatches (in-
correct GAMs). Since the overall ratio of correct matches is
only 18.4%, the statistics are relevant and truly summarize
the behavior of the GAM constructor. The second prop-
erty is well con�rmed: 96.4% of all non-singleton GAMs
are composed of either only correct matches or only mis-
matches (as the property trivially holds for singleton GAMs,
they are omitted from this statistic). The property is also
almost ful�lled by the remaining 3.6% of GAMs, as they
contain all correct matches, but one (2.4%) or two (1.2%).
The relation between the size of a GAM and its probability
of being correct is shown in �gure 2-top-right, which plots
the percentage of correct GAMs of sizeN , for varyingN .
The chances that a GAM is correct quickly grow with its
size and is 94% forN > 6.

3. Two-view �ltering
This section applies GAMs to the problem of robust two-
view �ltering. This application is unrelated to the OR from
multiple-model views, covered by the next sections.

Given a set of matches containing a large amount of mis-
matches, say more than 80%, we need to tell the correct
matches apart. Unfortunately, the widely used RANSAC
Epipolar Geometry (RANSAC-EG [10]) �lter performs
poorly in presence of more than 60% mismatches. Instead,
we can partition the input matches into GAMs, and build
on their fundamental properties. Rather than deciding on
which matches to keep, we can decide on which complete
GAMs to keep. GAMs are seen as the new atomic units.
Moreover, since GAMs composed by more matches are
more likely to be correct, we can design a powerful �lter by
relying more on the larger GAMs and using them to validate
the smaller ones. Next, we introduce such a GAM-based �l-
ter which can handle very high amounts of mismatches (we
demonstrate it up to 96%).

The algorithm starts by constructing GAMs from the in-
put matches. Next, the GAMs are sorted according to their
size, from the ones containing the most regions, to the ones
containing the least. In the �rst iteration, a fundamental
matrix is �t to all regions in the �rst (largest) GAM. Then,
the number of inliers to this fundamental matrix are com-
puted, among all matches within the �rst GAM. The �rst
GAM is implicitly assumed correct. In the second iteration,
a new fundamental matrix is �t to the �rst and the second
largest GAMs. If there are more inliers to this new matrix
than there were before, then the second GAM is deemed
correct. All iterations have this general form. In thekth it-
eration, a fundamental matrix is �t to all GAMs previously
deemed correct plus thekth one. If the number of inliers
to this fundamental matrix exceeds the maximum observed
so far, thekth GAM is considered correct. The inliers are
computed among the matches within all GAMs previously
deemed correct, plus thekth one. The algorithm iterates un-
til it meets the �rst singleton GAM. At this point, all single-
ton GAMs which are inliers to the latest fundamental matrix
are considered correct. All region matches within all GAMs
deemed correct are returned as correct matches.

The power of this simple algorithm lies in theorder in
which the GAMs are inspected. In the �rst few iterations,
the algorithm is likely to meet only correct matches, and
safely builds a solid fundamental matrix. In the later iter-
ations, this helps deciding whether smaller GAMs are cor-
rect. Besides, erroneous decisions matter less in the later
iterations, as less matches are at stake. Note how the atom-
icity of GAMs is respected: either all regions of a GAM are
accepted, or none.

The method has only two parameters: the maximal dis-
tance to the epipolar line, used to determine the inliers, and
the af�ne dissimilarity threshold used in the GAM construc-
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Figure 2:Results for GAM constructor and two-view �lter.

tor. These parameters are intuitive and easy to set, in con-
trast to RANSAC-EG, which requires the number of iter-
ations as a parameter. This is equivalent to providing the
maximal ratio of mismatches, which is unknown a priori,
and varies from case to case.

Figure 2-middle shows an example case. There are
122 initial matches, 98 of which are correct. Our algo-
rithm groups 96 of the correct matches into the two largest
GAMs (sized 59 and 37 respectively; the �gure shows some
matches from these two GAMs). Note how one correct
GAM covers a curved surface. The mismatches are spread
over 22 singleton GAMs and only one GAM sized 2. In
order to test the robustness of the GAM partitioning and
two-view �ltering algorithms, we have added an increas-
ing amount of randomly generated mismatches to the initial
set of matches. We added from 300 to 2100 random mis-
matches in 7 steps, therefore raising the total percentage of
mismatches from the initial 20% gradually up to 96%. At
each step, we recomputed the GAMs and applied the �l-
ter. As shown in �gure 2-top-left, the �lter performs very
well, steadily returning at least 98% of the correct matches,
also when as much as 96% of mismatches contaminate the
input. At the same time, the percentage of accepted mis-
matches stays approximately constant at 2.5%. The com-
position of the two largest GAMs remains identical in the
�rst 5 steps, and changes only marginally in the last two
steps. The largest incorrect GAM never contains more than
4 matches. As a comparison, the �gure also shows the per-
formance of RANSAC-EG. Even though it works very well
in the initial case, returning all correct matches but one, its
performance drops sharply with increasing amounts of mis-

matches. Already when adding 300 mismatches, only 51%
of the correct matches are returned. This value continu-
ously decreases until about 8% in the last two steps. Along
all steps, an approximately constant rate of about 4.5% mis-
matches are accepted.

The foliage scene in �gure 2-bottom illustrates a practi-
cal application of the new �lter. Severe matching ambigui-
ties arise due to the similar structures repeated many times
in the images. This results in many more mismatches than
in usual scenes. The initial matches set contains 25 correct
matches out of 206 (12%). In these conditions, RANSAC-
EG fails. However, the largest 3 GAMs are correct and con-
tain 23 correct matches (the 3 GAMs have respectively 11,
8 and 4 matches, see �gure). The mismatches are scattered
in mostly singleton GAMs, with the largest incorrect GAM
having only size 3. Our �lter returns 24 correct matches and
5 mismatches, therefore qualitatively solving the problem.

The observed weakness of RANSAC-EG is in agree-
ment with the independent works of [2, 1]. The exper-
iments recon�rm the advantageous properties of GAMs:
correct matches and mismatches are separated into different
GAMs, while mismatches form GAMs composed of at most
a few regions. These properties hold largely independently
of the amount of mismatches in the input. The GAM-based
�lter strongly outperforms RANSAC-EG and is shown ro-
bust to very high amounts of mismatches.

4. Object modeling
Let us now turn to the main topic of the paper: how to
exploit the relationships between multiple model views for
recognition. This section explains how we model the object,
while section 5 covers the actual recognition process.

The relationships among the model views are modeled
by a dense set ofregion-tracks. Each such track is com-
posed by the image regions of a single physical surface
patch along the model views in which it is visible. The set
of tracks should densely connect the model views, because
they will be used during recognition in order to establish
connections among GAMs matched from different model
views to the test image (section 5).

This section explains how we build the model region-
tracks, starting from the bare set ofM unordered model im-
ages. First, dense two-view matches are produced between
all pairs of model images (subsection 4.1). All pairwise
sets of matches are then integrated into a single multi-view
model (subsection 4.2).

4.1 Dense two-view correspondences

A dense set of region correspondences between two model
views vi and vj is obtained by our method [4]. In sum-
mary, the method �rst generates a large set of unreliable,
initial region matches, and then graduallyexploresthe sur-
rounding areas, trying to generate more and more matches,



increasingly farther from the initial ones. The exploration
process exploits the geometric transformations of existing
matches to construct correspondences invj , for a number
of overlapping circular regions, arranged on a grid com-
pletely covering the �rst model viewvi (coverage regions).
This is achieved by iteratively alternating expansion phases,
which construct new matching regions invj , with contrac-
tion phases, which remove mismatches. With each itera-
tion, the correct matches cover more and more of the object,
while the ratio of mismatches progressively decreases. The
method works well in the presence of non-rigid deforma-
tions, like folding and bending [4]. Although this usually
does not happen during modeling, it is an important feature
at recognition time. The �nal outcome is large set of reli-
able region correspondences, densely covering the parts of
the object visible in both views.

4.2 Dense multi-view correspondences

Once two-view region correspondences have been produced
for all ordered pairs of model views(vi ; vj ); i 6= j , they can
be organized into multi-view region tracks. When matching
a viewvi to any of the other model views, we always use the
same set of coverage regions. Therefore, each coverage re-
gion, together with the regions it matches in the other views,
induces a region track. Note that if a region is matched from
view vi to view vj , and also from viewvi to view vk , then
it is implicitly matched betweenvj andvk as well, because
it will be part of the same track. Thesetransitive matches
actively contribute to the interview connectedness, as they
often link parts of the object that are harder to match di-
rectly.
The �nal set of region tracks constitutes our object model.

5. Object recognition
Given a test image, the system should determine if it con-
tains the modeled object. The �rst step is to match each
model view of the object to the test image separately. For
this purpose, the algorithm of [4] is used again. Each re-
sulting set of region matches is then partitioned into GAMs,
via the algorithm of section 2. When applied to these
dense matches, the GAM decomposition is most meaning-
ful. Each correct GAM then usually corresponds to (part of)
an object facet (�gure 3, only the contour of each GAM is
shown).

However, at this stage, there is no guarantee that all
GAMs are correct. As a result, there usually are some in-
consistencies in the set of GAMs. For instance, a GAM cor-
rectly matches the head in �gure 3 from model view 1 to the
test image. Furthermore, there is another GAM erroneously
matching the paw in model view 2 to the chest in the test
image. Since the model views are interconnected by the
model tracks, the model knows the correspondences among
the regions on the paw in model views 1 and 2. Therefore

model view 1

model view 2

test image

Figure 3:The incorrect GAM on the paw is transferred from
model view 2 to model view 1 (arrow).

it considers that the second GAM matches the chest in the
test image to the paw in model view 1. Now both GAMs
match model view 1 to the test image, and their (geometric)
inconsistency can be measured and discovered.

Just as it �nds con�icting GAMs, the system can notice
GAMs that are compatible. This is a good reason for con-
sidering them as more reliable and therefore to reinforce the
system's belief in the presence of the object. This leads to
the main advantage in evaluating GAM compatibilities: the
reliability of the recognition decision is enhanced, because
higher scores can be assigned in positive cases (i.e. when
the object is in the test image). As a secondary advantage,
incorrect GAMs can be detected and removed, thus improv-
ing the segmentation.

This section explains how to realize these ideas. But be-
fore going into the details, we sketch the overall procedure.
For each pair of GAMs, we compute a compatibility score,
based on the geometric consistency of their relative arrange-
ment. In simple cases, the two GAMs are matched from the
same model view and the score can be computed directly. In
the more interesting cases where each GAM is from a differ-
ent model view, we �rst have totransferone of the GAMs
to the model view of the other. This is made possible by the
connections embedded in the model tracks. Next, the pair-
wise scores are integrated in a singlecon�guration score.
This varies as a function of thecon�guration, the subset of
all GAMs which are considered correct. The process favors
highly compatible subsets containing large GAMs. This is
justi�ed because larger GAMs are more likely to be correct.
A genetic algorithm is used to maximize the con�guration
score. The maximum yields the �nal recognition score and
reveals which GAMs are deemed incorrect. The recognition
score increases in presence of compatible GAMs, thereby
improving recognition performance.



The �nal recognition score, and the decisions to remove
GAMs, are based on aglobalanalysis of the situation. This
considers simultaneously relationships among all pairs of
GAMS, coming from all model views. It is computation-
ally feasible because there are much less GAMs (a few tens)
than region matches (hundreds to thousands). This is an
advantage of reasoning on the higher perceptual grouping
level offered by GAMs. The system no longer needs to
consider each single region individually, but it can rely ona
meaningful organization instead.
The following subsections describe the elements of the
above strategy in more detail.

5.1 GAM transfer

Consider a GAM matched from a model viewvi to the test
image, and another GAM matched from a different model
view vj . Before computing the compatibility score for this
GAM pair, they must be put in a common model view. Only
then the geometrical coherence of their relative arrangement
can be evaluated.
A GAM is transferred fromvi to vj as follows:

1. Determine the set of model regions� covering the
same part ofvi as the GAM. This is implemented
by selecting the model regions which strongly over-
lap (more than 70%) with the image area covered by
the union of the GAM's regions. Remove from� all
regions which are not part of a model track passing
throughvj . The model can now predict the location
and shape of the GAM invj .

2. Compute the af�ne transformations mapping each re-
gion of � from vi to vj .

3. Project each GAM region tovj via the af�ne trans-
formation of the nearest region of� . We have estab-
lished a region-to-region correspondence for the GAM
between the test image and model viewvj (�gure 3).

When transferring a GAM, it is like making a model-
based prediction. The pairwise compatibility score (next
subsection) evaluates to which degree the two GAMs are
consistent with this prediction. This idea is essential: inthis
way the system exploits the relationships among the model
views, in order to conclude more than what is possible from
the mere collection of all GAMs. During modeling, the sys-
tem learned the structure of the object in the form of region
tracks, and it brings this insight to bear at recognition time
by imposing order on the GAMs.

Note that a GAM cannot be transferred if the model re-
gions it covers in viewvi are not visible in viewvj (� is
empty). In these cases, the compatibility score is not com-
puted, and a neutral score is assigned instead. Note that
both GAMs could still be correct, but the object parts they
cover might not be visible in a single view at the same time.

5.2 Pairwise compatibility score

We evaluate here the geometric consistency of a pair of
GAMs. Both GAMs are matched between the test image
and a model viewvi . If at least one of the two GAMs is
incorrect, we wish this measure to be low.

The compatibility score is based on thesidedness con-
straint for unordered triples of region matches [3]. The
center of the �rst region should be on the same side of the
directed line going from the center of the second region to
the center of the third region, in both the model and the test
image. This holds for all coplanar triples of correct matches
and also for most non-coplanar ones [3]. In [3], this was
�rst exploited as the basis for a two-view mismatch �lter.

We check the constraint for all triples formed by a region
from a GAM and two more regions from the other GAM.
The percentage of triples respecting the constraint is our
choice for the compatibility score of the GAM pair. The
central idea is that if a region is picked from an incorrect
GAM, we expect that most of the triples in which it takes
part violate the constraint. Note that no triple is composed
of regions from a single GAM. This preserves the quality of
the measure when exactly one of the GAMs is correct.

The proposed score tolerates a substantial amount of
non-rigid deformation. This preserves the system's capabil-
ity of recognizing deformable objects. Moreover, it is insen-
sitive to inaccurately localized region matches, because the
number of triples violating the constraint grows smoothly
and slowly with a region departing from its ideal location.
This might happen, for instance, when a region is bridging
a non-planar part of the object.

The score can penalize con�icting GAMs (e.g.: in the
head-paw example above), but also assign high scores to
compatible pairs of GAMs. Although the score is based on
comparing region matches, it captures the compatibility of
the GAMs as a whole.

5.3 Con�guration score

The compatibility scores are computed for all pairs of
GAMs, and are combined here in a singlecon�guration
score.

The compatibility scores range in[0; 1]. Based on a
threshold t, we linearly transform the interval[0; t] to
[� 1; 0] and the interval[t; 1] to [0; 1]. The resulting val-
ues then range in[� 1; 1]. In all our experiments, the same
thresholdt = 0 :2 splits the original range into positive and
negative parts. Positive scores now indicate that two GAMs
are likely to belong together, while negative ones indicate
incompatibility.

We call a con�guration C a subset of the available
GAMs. What is the score of a con�guration ? It should be
high when containing large, mutually compatible GAMs. It
should be lower in presence of incompatible ones. These



two forces, pairwise corroboration and individual size, are
combined into the following con�guration score:

S(C) =
X

P 2 C

�
Size(P )+

X

Q 2 C nP

Comp(P; Q) � Size(Q)

�
(2)

The number of regions in GAMP is denotedSize(P),
whileComp(P; Q) 2 [� 1; 1]are the pairwise compatibility
scores. We are interested in the maximum value ofS(C),
and in the con�guration for which it occurs. The maximum
value is used as recognition criteria, to decide whether the
object is in the test image. Much like in section 3, more trust
is given to the larger GAMs (�rst summation term). The
second term makes the contribution of each GAM heavily
dependent on its compatibility with the others, especially
the larger ones. A GAM whose negative compatibilities
lower S will be left out. Smaller GAM can also be part of
the maximum con�guration, depending on how compatible
they are with the others.

An important effect of the second summation term is that
the total score can bemuch higherthan the mere sum of
the sizes of all correct GAMs. This re�ects the key idea
that compatible con�gurations are worth more because they
more reliably indicate the presence of the object. This in-
creases the separation between scores in positive and nega-
tive cases, thus improving discriminative power.

The GAMs not selected by the best con�guration are
deemed incorrect and are removed. Note how this deci-
sion is based on a global analysis. Typically, several in-
correct GAMs are detected thanks to their incompatibility
with GAMs matched to other model views. Such a case
couldn't have been discovered based on the GAM's model
view alone. This is another bene�t of our proposal for in-
tegrating multiple model views. In analogy with section 3,
each GAM is treated as an atomic unit.

5.4 Maximization by GA

We now need to �nd the con�guration which maximizes
function (2). Unfortunately, we can't try them all out, as
there are2n possible con�gurations ofn GAMs.

We designed a Genetic Algorithm (GA) to �nd an ap-
proximation of the solution. GAs offer an elegant and �exi-
ble framework for optimizing functions of any form. In this
context, we represent a con�guration by a binary indicator
vectorI of lengthn. If I (p) = 1 , thepth GAM is in the con-
�guration. The �tness functionF (I ) is de�ned equivalent
to S(C). The GA follows several steps:

1. Initialize. Create a random, uniformly distributed pop-
ulation of binary n-vectors. The size of this population
is l = ceil(

p
2n)2. Since this enforces

p
l to be an

integer, it simpli�es the later crossover.
2. Fitness. Evaluate the �tness functionF (I ) for each

individual. Stop if the best individual is identical as in
the previous generation (not tested the �rst time).

3. Crossover. Consider the best
p

l individuals. De-
rive the next generation by crossing over all pairs of
them. Crossing over two individuals means keeping
the identical bits and randomly choosing the different
bits. This amounts to producingl �

p
l new individu-

als, and copying the current best
p

l .
4. Mutation. Each bit of each individual in the new pop-

ulation is switched with probability 0.1. This avoids
that the algorithm explores only the part of the search
space spanned by the best individuals.

5. Iterate.Iterate to 2.

In various experiments, this GA proved effective by approx-
imating the true exhaustive search solution to less than 1
small GAM difference in average, on comparisons with up
to n = 20 GAMs. It is also very time ef�cient, and solves
cases withn = 20 within some seconds (exhaustive search
needs more than 1 hour), and scales well, taking less than
one minute forn = 60, a problem size for which the real
optimum cannot be computed.

6. Results and conclusions
We present results for the example object of �gure 3. It fea-
tures a complex geometry composed by several curved sur-
faces. Moreover, it is covered by ambiguous texture, formed
by many small variations on the same basic pattern, which
challenge the matching process. The model is built from
only 8 views, taken at 45 degrees intervals, all at about the
same height, during a tour around the vertical axis. Fig-
ures 3 and 4-left show 4 of the views.

On the example of �gure 3, the system initially produces
33 GAMs by matching each model view to the test image,
via the method of [4]. Only 9 of the GAMs are correct, but
4 of them are very large (more than 60 matches) and contain
the majority of the correctly matched regions. The method
proposed in this paper returns 10 GAMs in the con�gura-
tion with the maximal score. All of the 9 correct GAMs are
included, while all but one of the 24 erroneous GAMs are
detected and discarded. The �nal recognition score is 1770,
which is three times as much as the total number of matches
in the correct GAMs (596). Hence the con�dence about the
presence of the object is signi�cantly boosted, compared to
the system we started from [4], which just considers the to-
tal number of matches as score. Moreover, when the object
is not in the test image, our approach decreases the con-
�dence score. As combined effect, the scores assigned in
the two cases are more widely separated, which leads to en-
hanced discriminative power. Figure 4-top-right shows the
complete and accurate segmentation, as the total area cov-
ered by the 10 selected GAMs.

A challenging case is shown in �gure 4-bottom-middle.
The viewpoint is almost completely from above, and re-
markably different from any model view. The object ap-



Figure 4:Results. Left: model views. Middle: second case. Right: �rst and third cases.

pears twice smaller than in the model views, and is par-
tially occluded by a ball (head) and a Plush wildcat (front).
37 GAMs are initially produced, out of which 5 are cor-
rect. Most of the 32 wrong ones are composed by only
a few matches. Our method selects all 5 correct GAMs,
and 3 small incorrect ones, thereby effectively removing the
large majority of them. The recognition score is 581, i.e.
2.6 times higher than the number of correct matches (216).
Note the good quality of the segmentation, which includes
even parts of the tail and the left paw. The system has over-
come the aforementioned dif�culties. Figure 4-top-middle
shows some of theremovedGAMs. The last case (�gure 4-
bottom-right) demonstrates recognition in presence of non-
rigid deformations (raised arm, compressed chest).

Although preliminary, we believe these experiments
to show that the proposed method successfully improves
recognition performance by exploiting the relationships be-
tween multiple model views. The discriminative power is
enhanced due to the higher scores in positive cases, and the
segmentation quality improves due to the removal of spu-
rious region matches. Multi-view integration is achieved
without rigidity assumptions, and without constructing a 3D
model. This success is due also to the newly introduced
GAM representation. Because they are potentially valuable
in several contexts of computer vision, GAMs are interest-
ing in their own right. This was demonstrated by a powerful
GAM-based two-view �lter, that is largely insensitive to the
percentage of mismatches. In a way, GAMs also form an
alternative to the elusive concept of 'object parts', in that
they offer a perceptual unit between the local features and
the global object.

In the future, we plan to make the system more active.

Instead of matching to all model views, we could match to
the �rst, and then exploit the model connections to decide if
and which other model view to try out. Another important
extension is the support for sparsely textured objects.
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