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Abstract

We present a probabilistic generative model of visual attributes, togeftiean efficient
learning algorithm. Attributes are visual qualities of objects, such as, ‘tsttiped’, or
‘spotted’. The model sees attributes as patterns of image segmeetstadly sharing some
characteristic properties. These can be any combination of appeastiape, or the layout
of segments within the pattern. Moreover, attributes with general appEage taken
into account, such as the pattern of alternatiorammy two colors which is characteristic
for stripes. To enable learning from unsegmented training images, thdeln®learnt
discriminatively, by optimizing a likelihood ratio.

As demonstrated in the experimental evaluation, our model can learndaldysupervised
setting and encompasses a broad range of attributes. We show thatextohno be learnt
starting from a text query to Google image search, and can then be usszbtmize the
attribute and determine its spatial extent in novel real-world images.

1 Introduction

In recent years, the recognition of object categories hesrbhe a major focus of computer vision and
has shown substantial progress, partly thanks to the adoptitechniques from machine learning
and the development of better probabilistic represematjt, 3]. The goal has been to recognize
object categories, such as a ‘car’, ‘cow’ or ‘shirt’. Howewen object also has many other qualities
apart from its category. A car can k&, a shirtstriped a ballround, and a buildingall. These visual
attributesare important for understanding object appearance anddseribing objects to other
people. Figure 1 shows examples of such attributes. Auioeatrning and recognition of attributes
can complement category-level recognition and therefongrove the degree to which machines
perceive visual objects. Attributes also open the door peafing applications, such as more specific
gueries in image search engines (e.g. a spotted skirt,rrétha just any skirt). Moreover, as
different object categories often have attributes in comymmodeling them explicitly allows part
of the learning task to be shared amongst categories, avsaafpoeviously learnt knowledge about
an attribute to be transferred to a novel category. This neayae the total number of training
images needed and improve robustness. For example, lgah@variability of zebra stripes under
non-rigid deformations tells us a lot about the correspogdariability in striped shirts.

In this paper we propose a probabilistic generative modeisafal attributes, and a procedure for
learning its parameters from real-world images. When ptesenith a novel image, our method in-
fers whether it contains the learnt attribute and detersiihe region it covers. The proposed model
encompasses a broad range of attributes, from simple calotsas ‘red’ or ‘green’ to complex pat-
terns such as ‘striped’ or ‘checked’. Both the appearancetlaa shape of pattern elements (e.g. a
single stripe) are explicitly modeled, along with theirday within the overall pattern (e.g. adjacent
stripes are parallel). This enables our model to coverbaties defined by appearance (‘red’), by
shape (‘round’), or by both (the black-and-white stripegze@lras). Furthermore, the model takes
into account attributes with general appearance, suchipestvhich are characterized by a pattern
of alternation ABAB of any two colors A and B, rather than bypesific combination of colors.

Since appearance, shape, and layout are modeled expletliearning algorithm gains an under-
standing of the nature of the attribute. As another attradigature, our method can learn in a
weakly supervised setting, given images labeled only byptlesence or absence of the attribute,
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Figure 1:Examples of different kinds of attributes. On the left we show two simple attsibehose charac-
teristic properties are captured by individual image segments (appearéor red, shape for round). On the

right we show more complex attributes, whose basic element is a paigoesgs.

without indication of the image region it covers. The presdabsence labels can be noisy, as the
training method can tolerate a considerable number of bet#ta images. This enables attributes to
be learnt directly from a text specification by collectingiiing images using a web image search
engine, such as Google-images, and querying on the name afttibute.

Our approach is inspired by the ideas of Jojic and Caspi [A&re patterns have constant appearance
within an image, but are free to change to another appeararmather images. We also follow the
generative approach to learning a model from a set of imaged by many authors, for example
LOCUS [10]. Our parameter learning is discriminative — tlendfits of this have been shown
before, for example for training the constellation mode]3jf In term of functionality, the closest
works to ours are those on the analysis of regular textures] [FHowever, they work with textures
covering the entire image and focus on finding distinctiveegpance descriptors. In constrast, here
textures are attributes of objects, and therefore appeaprmplex images containing many other
elements. Very few previous works appeared in this setfind 1]. The approach of [7] focuses
on colors only, while in [11] attributes are limited to indiual regions. Our method encompasses
also patterns defined by pairs of regions, allowing to captoore complex attributes. Moreover,
we take up the additional challenge of learning the patteontetry.

Before describing the generative model in section 3, in #w section we briefly introduce image
segments, the elementary units of measurements obsertkea imodel.

2 Image segments — basic visual representation

The basic units in our attribute model are image segmentaagtl using the algorithm of [2]. Each
segment has a uniform appearance, which can be either asr@a@imple texture (e.g. sand, grain).
Figure 2a shows a few segments from a typical image.

Inspired by the success of simple patches as a basis for @ngeadescriptors [8, 9], we randomly
sample a large number &fx 5 pixel patches from all training images and cluster themgig&in
means [8]. The resulting cluster centers form a codeboplatth typesEvery pixel is soft-assigned

to the patch types. A segment is then represented as a npedhdlistogram over the patch types
of the pixels it contains. By clustering the segment hisaagg from the training images we obtain

a codebookA4 of appearancegfigure 2b). Each entry in the codebook is a prototype segment
descriptor, representing the appearance of a subset oégineenits from the training set.

Each segmentis then assigned the appearance A with the smallest Bhattacharya distance to the
histogram ofs. In addition to appearance, various geometric properfi@ssegment are measured,
summarizing its shape. In our current implementation,dteae: curvedness, compactness, elonga-
tion (figure 2c), fractal dimension and area relative to thage. We also compute two properties of
pairs of segments: relative orientation and relative afigarge 2d).



Figure 2:Image segments as visual features. a) An image with a few segmentschvrdaiding two pairs
of adjacent segments on a striped region. b) Each row is an entry froraghearance codeboaX (i.e.
one appearance; only 4 out of 32 are shown). The three most finéqpagch types for each appearance are
displayed. Two segments from the stripes are assigned to the white andpfsckrance respectively (arrows).
¢) Geometric properties of a segment: curvedness, which is the rati@betthie number of contour points
with curvature above a threshold and the total perimedfercompactness; and elongation, which is the ratio
between the minor and major moments of inertia. d) Relative geometric rigzpef a pair of segments:
relative area and relative orientation. Notice how these measures areynonstric (e.g. relative area is the
area of the first segment wrt to the second).

3 Generative models for visual attributes

Figure 1 shows various kinds of attributes. Simple attebwre entirely characterized by properties
of a single segmentfary attribute¥. Some unary attributes are defined by their appearancke, suc
as colors (e.g. red, green) and basic textures (e.g. saidyyrOther unary attributes are defined by
a segment shape (e.g. round). All red segments have sirppp@aaance, regardless of shape, while
all round segments have similar shape, regardless of agpesar More complex attributes have a
basic element composedtafo segmentsk{inary attribute3. One example is the black/white stripes
of a zebra, which are composed of pairs of segments shanmtasiappearancand shape across
all images. Moreover, the layout of the two segments is chaiatiteas well: they are adjacent,
nearly parallel, and have comparable area. Going yet furigeneralstripe pattern can havany
appearance (e.g. blue/white stripes, red/yellow stripewever, the pairs of segments forming
a stripe pattern in one particular image must have the sapesapnce. Hence, a characteristic of
general stripes is a pattern of alternation ABABAB. In thésse, appearance is common within an
image, but not across images.

The attribute models we present in this section encomphasyacts discussed above. Essentially,
attributes are found as patterns of repeated segmentsireopaegments, sharing some properties
(geometric and/or appearance and/or layout).

3.1 Image likelihood.

We start by describing how the mod#{ explains a whole imagé. Animagel is represented by a
set of segment§s}. A latent variablef is associated with each segment, taking the vilee1 for
a foreground segment, arfd= 0 for a background segment. Foreground segments are thoke on t
image area covered by the attribute. We collgéor all segments of into the vecto®. An image
has a foreground appearancgeshared by all the foreground segments it contains. ThéHiked of
an image is

p(IIM;F,a) = [ p(aIM; F, a) (1)

xzel
wherez is a pixel, andM are the model parameters. These include A, the set of appearances
allowed by the model, from whichis taken. The other parameters are used to explain segnmehts a
are dicussed below. The probability of pixels is uniformhirita segment, and independent across
segments:
p(z|M;F,a) = p(s*|M; f,a) @)

with s* the segment containing Hence, the image likelihood can be expressed as a prodect ov
the probability of each segmestcounted by its ared/; (i.e. the number of pixels it contains)
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Figure 3:a) Graphical model for unary attributed) is the number of images in the datasgt,s the number
of segments in image i, ar@ is the total number of geometric properties considered (both active amtive
b) Graphical model for binary attributes.is a pair of segmentsp; » are the geometric distributions for each
segment a pain? are relative geometric distributions (i.e. measure properties betweendgroents in a pair,
such as relative orientation), and there aReof them in total (active and inactive). is the adjacency model
parameter. It tells whether only adjacent pairs of segments are caesidsop(c|d = 1) is one only iffc is a
pair of adjacent segments).

()

Note thatF anda are latent variables associated with a particular imag¢he® is a differenF
anda for each image. In contrast, a single modédlis used to explain all images.

3.2 Unary attributes

Segments are the only observed variables in the unary madsgments = (s,, {s}) is defined

by its appearance, and shape, captured by a set of geometric measurerﬁe’ﬁtssuch as elon-
gation and curvedness. The graphical model in figure 3atiditess the conditional probability of
image segments
: _ | plsala) - T, p(sh1@7) if f=1

p(s|M; f,a) = { 3 J it f=0 4)
The likelihood for a segment depends on the model paramstees (o, 3, {\/}), which specify
a visual attribute. For each geometric propexty= (®/,v7), the model defines its distribution
®J7 over the foreground segments and whether the propeggtigeor not @/ = 1 or 0). Active
properties are relevant for the attribute (e.g. elongasamelevant for stripes, while orientation is
not) and contribute substantially to its likelihood in (4)active properties instead have no impact
on the likelihood (exponentiation by). It is the task of the learning stage to determine which
properties are active and their foreground distribution.

The factorp(s,|a) = [s, = a] is 1 for segments having the foreground appearanice this image,
and0 otherwise (thus it acts as a selector). The scalar vahepresents a simple background model:
all segments assigned to the background have likeliltbdauring inference and learning we want
to maximize the likelihood of an image given the model afewhich is achieved by setting to
foreground when th¢ = 1 case of equation (4) is greater than

As an example, we give the ideal model parameters for thibatitr ‘red’. « contains the red
appearance only3 is some low value, corresponding to how likely it is for n@trsegments to
be assigned the red appearance. No geometric properyis active (i.e. all? = 0).

3.3 Binary attributes

The basic element of binary attributes ipair of segments. In this section we extend the unary
model to describe pairs of segments. In addition to duptigathe unary appearance and geomet-
ric properties, the extended model includes pairwise ptagewhich do not apply to individual
segments. In the graphical model of figure 3b, these aréuelg¢ometric propertieg (area, orien-
tation) and adjacenay, and together specify tHayoutof the attribute. For example, the orientation
of a segment with respect to the other can capture the pésaillef subsequent stripe segments.
Adjacency expresses whether the two segments in the paiidgaeent (like in stripes) or not (like
the maple leaf and the stripes in the canadian flag). We censieb segments adjacent if they share
part of the boundary. A pattern characterized by adjacagmeats is more distinctive, as it is less
likely to occur accidentally in a negative image.

Segment likelihood. Animage is represented by a set of segmén}s and the set of all possible
pairs of segment$c}. The image likelihood(I|M;F, a) remains as defined in equation (3), but



now a = (a1,az) specifies two foreground appearances, one for each segmém pair. The
likelihood of a segment is now defined as the maximum over all pairs containing it

Pl fa) = { Sesteacct PleM,1) =1 ©

Pair likelihood. The observed variables in our model are segmeiatsd pairs of segments A
pairc = (s1, s2, {ck}) is defined by two segments, s, and their relative geometric measurements

{cF} (relative orientation and relative area in our implemeatgt The likelihood of a pair given
the model is

P(elM, @) = plsiorsaala)- TT (plsd 100" - p(sh ,193)2) 11 (p(et1eh)®) -peis)  ®)

appearance J

shape layout

The binary model parametesst = («, 3,4, {M1},{\}, {#*}) control the behavior of the pair
likelihood. The two sets oh! = (®/,v]) are analogous to their counterparts in the unary model,

and define the geometric distributions and their associtédation states for each segment in the
pair respectively. The layout part of the model capturesritezaction between the two segments in
the pair. For each relative geometric propeyrty= (¥*, v¥) the model gives its distributiolr* over
pairs of foreground segments and its activation stfitéfhe model paramet@rdetermines whether
the pattern is composed of pairsaifjacentsegmentsd = 1) or just any pair of segments & 0).
The factorp(c|d) is defined a® iff § = 1 and the segments inare not adjacent, while it isin all
other cases (so, when= 1, p(c|d) acts as a pair selector). The appearance fagtar,, sz .|a) =
[s1,a = a1 A s2,4 = ag] is 1 when the two segments have the foreground appearanee§:;, az)

for this image.

As an example, the model for a general stripe pattern is dawsl o = (A,.4) contains all
pairs of appearances from. The geometric propertie/sflong , AU are active ¢ = 1) and their
distributions®] peaked at high elongation and low curvedness. The corregppproperties \J }
have similar values. The layout parameters @re: 1, andy"¢l-eree yrel-orient gre gctive and
peaked ab (expressing that the two segments are parallel and havethe area). Finally; is a
value very close t0, as the probability of a random segment under this compledetis very low.

4 Learning the model

Image Likelihood. The image likelihood defined in (3) depends on the foregrthamkground
labelsF and on the foreground appearanceComputing the complete likelihood, given only the
model M, involves maximizing: over the appearancesallowed by the model, and ovér.

P(I|M) = max max p(T|M; F, a) @)
aca

The maximization oveF is easily achieved by setting eaghto the greater of the two cases in
equation (4) (equation (5) for a binary model). The maximi@aover a requires trying out all
allowed appearances This is computationally inexpensive, as typically there @bout32 entries
in the appearance codebook.

Training data. We learn the model parameters in a weakly supervised seffing training data
consists of positive; = {I’ } and negative images_ = {I’}. While many of the positive
images contain examples of the attribute to be learnt (fig)ye considerable proportion don't.
Conversely, some of the negative images do contain théuaiiri Hence, we must operate under a
weak assumption: the attribute occurs more frequently @itige training images than on negative.
Moreover, only the (unreliable) image label is given, nat kbcation of the attribute in the image.
As demonstrated in section 5, our approach is able to leam this noisy training data.

Although our attribute models are generative, learningtirea discriminative fashion greatly helps
given the challenges posed by the weakly supervised sefiiagexample, in figure 4 most of the
overall surface for images labeled ‘red’ is actuallite Hence, a maximum likelihood estimator
over the positive training set alone would learn white, reat.rA discriminative approach instead
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Figure 4: Advantages of discriminative training. The task is to learn the attribute ‘rédthough the most
frequent color in the positive training images is white, white is also commorsathe negative set.

notices that white occurs frequently also on the negatitieasel hence correctly picks up red, as it
is most discriminative for the positive set. Formally, thek of learning is to determine the model
parameters\ that maximize the likelihood ratio

p(@eim) _ ez pUM)

PTIM) ~ Tl o pE M) ®

Learning procedure. The parameters of the binary model av¢ = (o, 3,6, {\] }, {\3}, {7*1),

as defined in the previous sections. Since the binary modesigperset of the unary one, we only
explain here how to learn the binary case. The procedurééannary model is derived analogously.
In our implementationy can contain either a single appearanceglbappearances in the codebook
A. The former case covers attributes such as colors, or pattéth specific colors (such as zebra
stripes). The latter case covers generic patterns, aswtsatach image to pick a different appearance
a € «, while at the same time it properly constrains all segmpatss within an image to share the
same appearance (e.g. subsequent pairs of stripe segnagatshle same appearance, forming a
pattern of alternation ABABAB). Because of this definitiancan take or(1 + |.A|)2/2 different
values (sets of appearances). As typically a codebo@l|ok 32 appearances is sufficient to model
the data, we can afford exhaustive search over all possithiees ofa. The same goes far, which
can only take on two values.

Given a fixedn andd, the learning task reduces to estimating the backgrounubitity 5, and the
geometric propertie§\] }, {\}}, {7*}. To achieve this, we need determine the latent variBtfier
each training image, as it is necessary for estimating tbengéric distributions over the foreground
segments. These are in turn necessary for estimgtingiven g and the geometric properties we
can estimatd&" (equation (6)). This particular circular dependence ingtracture of our model
suggests a relatively simple and computationally cheapoxirpate optimization algorithm:

1. For eachl € {Z, |JZ_}, estimate an initiaF anda via equation (7), using an initial
B8 = 0.01, and no geometry (i.e. all activation variables set)to

2. Estimate all geometric distributiortiﬁ, @%, Uk over the foreground segments/pairs from
all images, according to the initial estimatds}.

3. Estimated and the geometric activationsteratively:
(a) Updates as the average probability of segments frém This is obtained using the
foreground expression of (5) fatl segments of _.
(b) Activate the geometric property which most increaseditelihood-ratio (8) (i.e. set
the corresponding to 1). Stop iterating when no property increases (8).
4. The above steps already yield a reasonable estimaterobakl parameters. We use it as
initialization for the following EM-like iteration, whichefiness and®}, ®}, ¥*
(a) Update{F} given the curreng and geometric properties (set egtto maximize (5))
(b) Updated?, &, T* given the curren{F}.
(c) Updates overZ_ using the currend?, &, Wk,

The algorithm is repeated over all possiblandd, and the model maximizing (8) is selected. Notice
how j is continuously re-estimated as more geometric propateadded. This implicitly offers to
the selector the probability of an average negative seguratdr the current model as an up-to-date
baseline for comparison. It prevents the model from overigifieing as it pushes it to only pick up
properties which distinguish positive segments/pairmfregative ones.
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Figure 5: a) color models learnt for red, green, blue, and yellow. For each, theetimost frequent patch
types are displayed. Notice how each model covers different shadeslor. b+c) geometric properties of the
learned models for stripes (b) and dots (c). Both models are binarg emeral appearance, i.e. = (A, A),

and adjacent segments, i.6.= 1. The figure shows the geometric distributions for the activated geometric
properties. Lower elongation values indicate more elongated segmehtaniAslot means the property is not
active for that attribute. See main text for discussion.

One last, implicit, parameter is the model complexity: ie #ttribute unary or binary ? This is
tackled through model selection: we learn the best unanparady models independently, and then
select the one with highest likelihood-ratio. The comparis meaningful because image likelihood
is measured in the same way in both unary and binary casesai.the product over the segment
probabilities, equation (3)).

5 Experimental results

Learning. We present results on learning four colors (red, green,, dnd yellow) and three
patterns (stripes, dots, and checkerboard). The posianeitig set for a color consists of the 14
images in the first page returned by Google-images whenepibyi the color name. The proportion
of positive images unrelated to the color varies betwi$h and36%, depending on the color (e.g.
figure 4). The negative training set for a color contains aflifive images for the other colors. Our
approach delivers an excellent performance. In all cakescdrrect model is returned: unary, no
active geometric property, and the correct color as a spefpearance (figure 5a).

Stripes are learnt from 74 images collected from Googleggsausing ‘striped’, ‘stripe’, ‘stripes’
as queries20% of them don't contain stripes. The positive training setdots containg5 images,
29% of them without dots, collected from textile vendors wedsiand Google-images (keywords
‘dots’, ‘dot’, ‘polka dots’). For both attributes, th& images for colors act as negative training
set. As shown in figure 5, the learnt models capture well theraaf these attributes. Both stripes
and dots are learnt as binary and with general appearandke, thby differ substantially in their
geometric properties. Stripes are learnt as elongatdukrratraight pairs of segments, with largely
the same properties for the two segments in a pair. Theiukagomeaningful as well: adjacent,
nearly parallel, and with similar area. In contrast, dots laarnt as small, unelongated, rather
curved segments, embedded within a much larger segmerg.c@hibe seen in the distribution of
the area of the first segment, the dot, relative to the areheo$écond segment, the ‘background’
on which dots lie. The background segments have a very curigzhgging outline, because they
circumvent several dots. In contrast to stripes, the twongggs that form this dotted pattern are not
symmetric in their properties. This characterisic is medealvell by our approach, confirming its
flexibility. We also train a model from the firg82 Google-images for the query ‘checkerboai8%

of which show a black/white checkerboard. The learnt maglbinary, with one segment for a black
square and the other for an adjacent white square, demtingttae learning algorithm correctly
infers both models with specific and generic appearancetiadeto the training data.

Recognition. Once a model is learnt, it can be used to recognize whetheved imoage contains
the attribute, by computing the likelihood (7). Moreovéig tarea covered by the attribute is local-
ized by the segments with = 1 (figure 6). We report results for red, yellow, stripes, antsdall

test images are downloaded from Yahoo-images, Googledamamd Flickr. There are 45 (red), 39
(yellow), 106 (stripes), 50 (dots) positive test imagesgémeral, the object carrying the attribute
stands against a background, and often there are othet®bjabe image, making the localization
task non-trivial. Moreover, the images exhibit extremealaility: there are paintings as well as pho-
tographs, stripes appear in any orientation, scale, andasppce, and they are often are deformed



Figure 6: Recognition results. Top row: red (left) and yellow (right). Middle rowsipsts. Bottom row:
dots. We give a few example test images and the corresponding localizatiahsed by the learned models.
Segments are colored according to their foreground likelihood, using iaflet colormap (from dark blue to
green to yellow to red to dark red). Segments deemed not to belong to tiheitatéire not shown (black). In
the case of dots, notice how the pattern is formed by the dots themarbil®sthe uniform area on which they
lie. The ROC plots shows the image classification performance for each &ttribhe two lower curves in
the stripes plot correspond to a model without layout, and without eitheulalyor any geometry respectively.
Both curves are substantially lower, confirming the usefulness of thetlapdishape components of the model.

(human body poses, animals, etc.). The same goes for doish wéin vary in thickness, spacing,
and so on. Each positive set is coupled with a negative onghich the attribute doesn't appear,
composed of 50 images from the Caltech-101 ‘Things’ set [B2tause these negative images are
rich in colors, textures and structure, they pose a coralideichallenge for the classification task.

As can be seen in figure 6, our method achieves accurateZatiafis of the region covered by the
attribute. The behavior on stripe patterns composed of riane two appearances is particularly
interesting (the trousers in the rightmost example). Theehexplains them as disjoint groups of
binary stripes, with the two appearances which cover tlgeltrimage area. In terms of recognizing
whether an image contains the attribute, the method pesfeary well for red and yellow, with ROC
equal-error rates abow®%. Performance is convincing also for stripes and dots, éalbpesince
these attributes have generic appearance, and hence nrasbgaized based only on geometry and
layout. In contrast, colors enjoy a very distinctive, sfie@ppearance.
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