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Abstract--Many textures require complex models to describe 

their intricate structures. Their modeling can be simplified if they 

are considered composites of simpler subtextures. After an initial, 

unsupervised segmentation of the composite texture into the 

subtextures, it can be described at two levels. One is a label map 

texture, which captures the layout of the different subtextures. 

The other consists of the different subtextures. This scheme has 

to be refined to also include mutual influences between textures, 

mainly found near their boundaries. The proposed composite 

texture model also includes these. The paper describes an 

improved implementation of this idea. Whereas in a previous 

implementation subtextures and their interactions were 

synthesized sequentially, this paper proposes a parallel 

implementation, which yields better results with simpler models. 

 
Index Terms--texture synthesis, texture analysis, statistical 

texture modeling, composite textures, hierarchical texture model. 

I. INTRODUCTION 

HE intricate nature of many textures makes it difficult to 

extract models that are compact and that support high 

quality synthesis. Often, the problem can be reduced by 

considering the texture as a composite of simpler subtextures. 

We propose such hierarchical approach to texture synthesis. 

We show that this approach can be used to synthesize intricate 

textures and even complete scenes, and that it also improves 

the results for "simple" textures. This suggests that 

hierarchical approaches to texture synthesis hold good promise 

as a general principle. 

Before explaining the composite texture algorithm, we 

concisely describe our basic texture model for single textures, 

in order to make this paper more self-contained. The point of 

departure of the basic model is the co-occurrence principle. 

Simple statistics about the colors at pixel pairs are extracted, 

where the pixels take on carefully selected, relative positions. 

It differs in this selectivity from more broad-brush co-

occurrence methods [3], [4]. Every different type of pair – i.e. 

every different relative position – is referred at as a clique 

type. The statistics gathered for these cliques are the 

histograms of the intensity differences between the head and 

tail pixels of the pairs, and this for all three color bands R, G, 

and B. Hence, the basic model consists of a selection of 
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cliques (the neighborhood system) and their color statistics 

(the statistical parameter set). A more detailed explanation 

about these basic models and how they are used for texture 

synthesis is given in [8]. 

II. COMPOSITE TEXTURE MODELS 

Fig. 1 shows a texture and a synthetic version that was 

generated using its basic model. The result is of low quality. 

  
(a) original (b) synthesis from basic model 

Fig. 1. The image on the left shows a complex landscape texture; the image 
on the right shows the result of attempting to synthesize similar texture from 
its basic model, that considers the original as one, single texture. 

The example shows that at least in some cases a more 

sophisticated texture model is needed. As mentioned, the idea 

explored in this paper is that a prior decomposition of such 

textures into their subtextures (e.g. grass, sand, bush, rock, etc. 

in the example image) is useful. The layout of these 

subtextures (the label map) can be considered to be a texture 

in its own right, which can be modeled using an approach 

similar to the basic modeling scheme and of which more can 

then be synthesized. Also the subtextures can be modeled 

using the basic model. If not, a second decomposition could be 

used, but we have not explored such recursive decompositions 

at this point. Texture synthesis then amounts to first 

synthesizing a label map, and then synthesizing the 

subtextures at the corresponding places. A similar idea has 

been propounded independently by Hertzmann et al. [5], but 

their "texture by numbers" scheme (based on smart copying 

from the example [2], [6]) did not include the automated 

extraction or synthesis of the label maps (they were hand-

drawn). 

A crucial point is how to perform the decomposition, i.e. 

how to segment the texture into its subtextures. We have 

devised an unsupervised segmentation scheme, which 

calculates pixel similarity scores on the basis of color and 

local image structure and which uses these to group pixels 

through efficient clique partitioning. This segmentation 

procedure is explained in a companion paper [1]. 

This paper focuses on the construction of the composite 

texture model, on the basis of an example image and its 

segmentation. A straightforward implementation would model 
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the subtextures separately. In reality, however, subtextures 

will not be stationary within their patch boundaries. Typically 

there are natural processes at work (geological, biological, …) 

that cause interactions between the subtextures. There are 

transition zones around some of the subtexture boundaries. 

Fig. 2 illustrates such transition effect. The image on the left is 

an original image of zebra fur. The image in the middle is the 

result of taking the left’s image label map (consisting of the 

black and white stripes) and filling in the black and white 

subtextures. The boundaries between the two look unnatural. 

The image on the right has been synthesized taking the 

subtexture interactions into account, using the algorithm 

proposed in this paper. The texture looks much better now. 

(a) original 
(b) subtexture synthesis 
without interactions 

(c) subtexture synthesis 
with interactions 

Fig. 2. Composite texture synthesis of zebra fur with and without subtexture 
interactions demonstrates the importance of the latter. 

In [7] we have proposed a scheme that orders the 

subtextures by complexity, and then embarks on a sequential 

synthesis, starting with the simplest. Only interactions with 

subtextures that have been synthesized already are taking into 

account. In this paper we propose an alternative, parallel 

approach, where all subtextures and their interactions are 

taken care of simultaneously, both during modeling and 

synthesis. The sequential aspect that remains, is that first the 

label texture is synthesized and only then the subtextures.  

The main advantage of the parallel approach is that all bi-

directional, pairwise subtexture interactions can be taken into 

account. This, in general, results in better quality and a more 

compact model. Additionally, there is a disturbing asymmetry 

between the model extraction and subsequent texture synthesis 

procedures with the sequential approach. During modeling the 

surrounding subtextures are ideal, i.e. taken from the reference 

image. This is not the case during the synthesis stage, where 

the sequential method has to build further on the basis of 

previously synthesized subtextures. There is a risk that the 

sequentially generated subtextures will be of lower and lower 

quality, due to error accumulation. The parallel approach, in 

contrast, is free from these drawbacks, as both the modeling 

and synthesis stages operate under similar conditions. The 

advantage of the sequential modeling step (but not the 

synthesis one!) is that every subtexture can be modeled 

simultaneously, distributed over different computers. But as 

speed is more crucial during synthesis, this advantage is 

limited in practice.  

During model extraction, the foremost problem is the clique 

type selection. This problem is more complicated in the 

parallel case, as there are many more clique types to choose 

from. At every iteration of the modeling algorithm – to be 

described shortly – a choice can be made between all inter- 

and intra-label cliques. Intra-label cliques have their head and 

tail pixels within the same subtexture, whereas inter-label 

cliques have their heads and tails in different subtextures. The 

inter-label cliques are needed to model the interactions 

between the subtextures. 

The parallel composite texture modeling takes the following 

steps: 

1. Segment the example image of the composite texture. The 

image and the resulting label map are the input for the 

modeling procedure. Let K be the number of subtextures 

and B − the number of image color bands. 
2. Calculate the intensity difference histograms for all inter-

label and intra-label clique types that occur in the example 

image, up to a maximal, user-specified head-tail distance 

(the clique length). They will be referred at as reference 

histograms. After this step the example image is no longer 

needed. 

3. Construct an initial composite texture model containing the 

K×B intensity histograms for each subtexture and each 
color band and 2K×B clique types and their statistics: for 
each subtexture/band the shortest horizontal and shortest 

vertical cliques are added to the model. 

Loop: 

4. Synthesize a texture using the input label map and the 

current composite texture model, as discussed further on. 

5. Calculate the intensity difference histograms for all inter-

label and intra-label clique types from the image 

synthesized in step 4, up to a maximal, user-specified 

clique length. They will be referred to as current 

histograms. 

6. Measure the histogram distances − a weighted (see below) 
Euclidean distance between the reference and current 

histograms. 

7. If the maximal histogram distance is less than a threshold 

go to the step 9. 

8. Add the following 2K histograms to the composite model: 

(a) K intra-label ones, for each subtexture the one with the 

largest histogram distance; (b) K inter-label ones, those 

with the largest histogram distance for pairs of subtextures 

(k,n) for all n and one fixed k at a time. 

Loop end. 

9. Model the label map as a normal non-composite texture 

(i.e. using the basic model), except that instead of intensity 

difference histograms the label co-occurrences are used. 

Stop. 

The label map generation is driven by label co-occurrences 

and not differences because the latter are meaningless in that 

case. Also, there are only a few labels in a typical 

segmentation and, hence, taking the full co-occurrence matrix 

rather than only difference histograms into account comes at 

an affordable cost. 

We now concisely describe how texture synthesis is carried 

out, and how histogram distances are weighted. 

A. Texture synthesis 

Texture synthesis is organized as an iterative procedure that 

generates an image sequence, where histogram distances for 

the clique types in the model decrease with respect to the 
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corresponding reference histograms. This evolution is based 

on non-stationary, stochastic relaxation, underpinned by 

Markov Random Field theory. Non-stationary means that the 

control parameters of the synthesizer (in our case these are so-

called Gibbs parameters of the random field) are changed 

based on the comparison of the reference and current 

histograms [8]. 

A separate note on the synthesis of subtexture interactions is 

in order here. Even if the modeling procedure selects quite a 

few inter-label clique types, they still represent a very sparse 

sample from all possible such clique types, as there are of the 

order of K
2 subtexture pairs, as opposed to K subtextures, for 

which just as many clique types were selected. Thus, many 

subtexture pairs do not interact according to the composite 

texture model (i.e., there are no cliques in the model 

corresponding to the label pair under consideration). For such 

pairs, subtexture knitting − a predefined type of interaction − 
is used. During knitting neighboring pixels outside the 

subtexture’s area are nevertheless treated as if they lay within, 

and this for all clique types of that subtexture. The intensity 

difference is calculated and its entry in the histogram for the 

given subtexture is used. Knitting produces smooth transitions 

between subtextures. In case clique types describing the 

interaction between a subtexture pair have been included in 

the model, their statistical data are used instead and knitting is 

turned off for that pair. 

During normal synthesis, the composite texture model is 

available from the start and all subtexture pairs without 

modeled interactions are known beforehand. Hence, knitting is 

always applied to the same subtexture pairs, i.e., it is static. 

During the texture modeling stage the set of selected clique 

types will be constantly updated and the knitting is adaptive. 

Knitting will be automatically switched off for subtexture 

pairs with a selected inter-label clique type. This will also 

happen for subtexture pairs that do not interact, e.g. a texture 

that simply occludes another one. This is because during the 

composite texture modeling process knitting is turned on for 

all pairs which are left without an inter-label clique type. 

Knitting will not give good results for independent pairs 

though, as it blends the textures near their border. Hence, a 

clique type will be selected for such pairs, as the statistics near 

the border are being driven away from reality under the 

influence of knitting. The selection of this clique type turns off 

further knitting, and will itself prescribe statistics that are in 

line with the subtextures’ independence. This process may not 

be very elegant in the case of independent subtextures, but it 

works. 

B. Histogram distances 

The texture modeling algorithm heavily relies on histogram 

distances. These are weighted Euclidean distances, where the 

weight is calculated as follows: 

 
( )

max

, ,
weight( , , )

N k k type
k k type

N
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where the clique count ( )N ⋅  is the number of cliques of this 

type having both the head and the tail inside the label class k , 

and 
max

N  is the maximum clique count reached over all 

clique types. The rationale behind this weighing is that types 

with low clique counts must not dominate the model, as the 

corresponding statistical relevance will be wanting. This 

weight also reduces the influence of long cliques types, which 

tend to have lower clique counts. 

For the inter-label cliques, this effect is achieved by making 

the weights dependent on clique length explicitly: 
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where ( )
max

,N k n  is the maximal clique count among the 

types for the given subtexture pair, ( )l type  is the clique 

length, and 
max
l  is the maximal clique length taken over all 

types present in the example texture. Such weighing again 

increases the statistical stability and gives preference to 

shorter cliques, which seems natural as the mutual influence of 

the subtextures can be expected to be stronger near their 

boundary. 

III. EXPERIMENTAL RESULTS 

This section shows some of our experimental results with 

the parallel composite texture synthesis. Fig. 3 shows three 

images. From left to right one has an example image of cloth, 

the result of segmentation, and synthetic cloth, using the label 

map in the middle. Fig. 4 and Fig. 5 show similar results for a 

limestone texture and a complete landscape, respectively. In 

both figures the one on the top is the original image, and the 

one at the bottom is synthetic. These examples demonstrate 

that the method is able to capture most of the subtleties of 

natural textures. 

   
Fig. 3. Parallel composite texture synthesis. Left to right: original image of 

cloth with four different knitted textures, segmentation map, synthetic image. 

Fig. 6 shows three images of a landscape. The one on the 

top is the original image. A label map was segmented out, and 

treated as a texture in order to generate similar landscape 

layouts. The image in the middle shows the result of our 

previous, sequential texture synthesis method applied to one of 

these layouts (synthetic label maps). The image on the bottom 

shows the same experiment, but now with textures synthesized 

by the parallel approach described in this paper. The overall 

result looks better. In particular, some unnaturally sharp 

transitions between the bush and grass subtextures have been 

eliminated. 

Fig. 7 shows another example where texture has been 

synthesized on the basis of a synthetic label map. The zebra 

texture has been synthesized completely automatically from 

the example of Fig. 2 (a). Fig. 8 shows a result for the texture 

of Fig. 3 left. This synthetic cloth looks awkward to the human 

eye, as it doesn’t respect the horizontal layout. 
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Fig. 4. Parallel composite texture synthesis. Top: original image of 

limestone, bottom: image synthesized on the segmentation map. 

 

 
Fig. 5. Parallel composite texture synthesis. Top: original aerial image of 

landscape, bottom: image synthesized on the segmentation map. 

 

 

 
Fig. 6. Landscape texture synthesis. Top to bottom: original image with 

three different textures, sequential scheme of synthesis, parallel composite 

synthesis with better, more natural texture transitions. 
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Fig. 7. Synthetic zebra fur on the synthetic layout label map (cf. Fig. 2). 

 

 
Fig. 8. Synthetic cloth on the synthetic layout label map (cf. Fig. 3). 

 

Finally, Fig. 9 illustrates that the composite texture 

approach also holds good promise for "single" textures. The 

texture on the left is the example. The one in the middle has 

been generated on the basis of its basic model, which included 

59 clique types. The image on the right is the result of a 

composite texture synthesis, where the model was limited to 

its first 59 cliques. Not only is this result better, it also took 

only 100 iterations instead of the 500 needed to get the result 

with the basic model. Also, despite the same overall clique 

type number, the computational complexity of the parallel 

approach is lower, because every pixel has about a half of this 

number belonging only to one of the two subtexture models 

and the subtexture interaction model. 

   

(a) original 
(b) synthesis as a single 

texture 

(c) synthesis as a 

composite texture 

Fig. 9. Also patterns that traditionally would be considered to be a single 

texture can benefit from the composite texture approach. 

IV. CONCLUSION 

We have described a hierarchical texture synthesis 

approach, that considers textures as composites of simpler 

subtextures, that are studied in terms of their own statistics, 

that of their interactions, and that of their layout. The approach 

supports the fully automated synthesis of complex textures 

from example images, without verbatim copying. 
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